Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
2051 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~-2\right) $ . | 2 |
2052 | Find the difference of the vectors $ \vec{v_1} = \left(-7,~-1\right) $ and $ \vec{v_2} = \left(2,~2\right) $ . | 2 |
2053 | Find the projection of the vector $ \vec{v_1} = \left(-9,~-4\right) $ on the vector $ \vec{v_2} = \left(-11,~-8\right) $. | 2 |
2054 | Find the sum of the vectors $ \vec{v_1} = \left(3,~2\right) $ and $ \vec{v_2} = \left(7,~1\right) $ . | 2 |
2055 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~6\right) $ . | 2 |
2056 | Find the angle between vectors $ \left(4,~6\right)$ and $\left(7,~0\right)$. | 2 |
2057 | Find the angle between vectors $ \left(-8,~-4,~0\right)$ and $\left(-3,~9,~7\right)$. | 2 |
2058 | Determine whether the vectors $ \vec{v_1} = \left(-6,~4\right) $ and $ \vec{v_2} = \left(-3,~2\right) $ are linearly independent or dependent. | 2 |
2059 | Find the projection of the vector $ \vec{v_1} = \left(15,~30\right) $ on the vector $ \vec{v_2} = \left(-1,~4\right) $. | 2 |
2060 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-8,~-3,~3\right) $ and $ \vec{v_2} = \left(-2,~-2,~-8\right) $ . | 2 |
2061 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~2\right) $ and $ \vec{v_2} = \left(4,~-1\right) $ . | 2 |
2062 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~-2\right) $ . | 2 |
2063 | Find the difference of the vectors $ \vec{v_1} = \left(6,~8\right) $ and $ \vec{v_2} = \left(5,~0\right) $ . | 2 |
2064 | Find the difference of the vectors $ \vec{v_1} = \left(6,~8\right) $ and $ \vec{v_2} = \left(5,~-1\right) $ . | 2 |
2065 | Find the difference of the vectors $ \vec{v_1} = \left(6,~4\right) $ and $ \vec{v_2} = \left(5,~-1\right) $ . | 2 |
2066 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~-4\right) $ . | 2 |
2067 | Find the magnitude of the vector $ \| \vec{v} \| = \left(7,~10\right) $ . | 2 |
2068 | Find the sum of the vectors $ \vec{v_1} = \left(4,~2\right) $ and $ \vec{v_2} = \left(1,~-2\right) $ . | 2 |
2069 | Find the angle between vectors $ \left(4,~2\right)$ and $\left(1,~-2\right)$. | 2 |
2070 | Find the sum of the vectors $ \vec{v_1} = \left(-5,~\dfrac{ 1 }{ 2 }\right) $ and $ \vec{v_2} = \left(2,~-\dfrac{ 1 }{ 4 }\right) $ . | 2 |
2071 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~-2,~4\right) $ and $ \vec{v_2} = \left(-1,~3,~-2\right) $ . | 2 |
2072 | Find the sum of the vectors $ \vec{v_1} = \left(1,~3\right) $ and $ \vec{v_2} = \left(2,~1\right) $ . | 2 |
2073 | Find the difference of the vectors $ \vec{v_1} = \left(-18,~18\right) $ and $ \vec{v_2} = \left(4,~25\right) $ . | 2 |
2074 | Find the difference of the vectors $ \vec{v_1} = \left(-15,~40\right) $ and $ \vec{v_2} = \left(-2,~-8\right) $ . | 2 |
2075 | Find the angle between vectors $ \left(\dfrac{ 62 }{ 5 },~45\right)$ and $\left(\dfrac{ 26 }{ 5 },~90\right)$. | 2 |
2076 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~0,~0\right) $ and $ \vec{v_2} = \left(0,~\dfrac{ 1 }{ 2 },~0\right) $ . | 2 |
2077 | Calculate the cross product of the vectors $ \vec{v_1} = \left(0,~\dfrac{ 1 }{ 2 },~0\right) $ and $ \vec{v_2} = \left(-1,~1,~0\right) $ . | 2 |
2078 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~1,~0\right) $ and $ \vec{v_2} = \left(1,~1,~0\right) $ . | 2 |
2079 | Find the angle between vectors $ \left(-21.58,~-20.84\right)$ and $\left(-9.72,~-20.85\right)$. | 2 |
2080 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0.2103,~0.7071,~0.6751\right) $ . | 2 |
2081 | Find the difference of the vectors $ \vec{v_1} = \left(0,~-3\right) $ and $ \vec{v_2} = \left(0,~5\right) $ . | 2 |
2082 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~0\right) $ . | 2 |
2083 | Find the sum of the vectors $ \vec{v_1} = \left(5,~0\right) $ and $ \vec{v_2} = \left(10,~60\right) $ . | 2 |
2084 | Find the sum of the vectors $ \vec{v_1} = \left(2,~3\right) $ and $ \vec{v_2} = \left(-1,~2\right) $ . | 2 |
2085 | Find the sum of the vectors $ \vec{v_1} = \left(6,~18\right) $ and $ \vec{v_2} = \left(-2,~4\right) $ . | 2 |
2086 | Find the angle between vectors $ \left(-3,~-2\right)$ and $\left(5,~-7\right)$. | 2 |
2087 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~-2\right) $ . | 2 |
2088 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~-6\right) $ . | 2 |
2089 | Determine whether the vectors $ \vec{v_1} = \left(1,~-6\right) $ and $ \vec{v_2} = \left(-15,~8\right) $ are linearly independent or dependent. | 2 |
2090 | Calculate the cross product of the vectors $ \vec{v_1} = \left(4,~2,~0\right) $ and $ \vec{v_2} = \left(-2,~1,~8\right) $ . | 2 |
2091 | Find the magnitude of the vector $ \| \vec{v} \| = \left(17,~8\right) $ . | 2 |
2092 | Find the sum of the vectors $ \vec{v_1} = \left(-3,~8\right) $ and $ \vec{v_2} = \left(4,~-4\right) $ . | 2 |
2093 | Find the magnitude of the vector $ \| \vec{v} \| = \left(35,~21\right) $ . | 2 |
2094 | Determine whether the vectors $ \vec{v_1} = \left(1,~1\right) $ and $ \vec{v_2} = \left(2,~2\right) $ are linearly independent or dependent. | 2 |
2095 | Find the angle between vectors $ \left(3,~-4\right)$ and $\left(-5,~-12\right)$. | 2 |
2096 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~7\right) $ . | 2 |
2097 | Find the sum of the vectors $ \vec{v_1} = \left(-4,~7\right) $ and $ \vec{v_2} = \left(0,~0\right) $ . | 2 |
2098 | Find the difference of the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(3,~-4\right) $ . | 2 |
2099 | Find the difference of the vectors $ \vec{v_1} = \left(-5,~-2\right) $ and $ \vec{v_2} = \left(-3,~4\right) $ . | 2 |
2100 | Find the difference of the vectors $ \vec{v_1} = \left(4,~1\right) $ and $ \vec{v_2} = \left(2,~5\right) $ . | 2 |