Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
2001 | Find the angle between vectors (4, −4) and (−12, −12). | 2 |
2002 | Find the angle between vectors (4, −4) and (1, −4). | 2 |
2003 | Find the angle between vectors (4, −4) and (−1, −3). | 2 |
2004 | Calculate the dot product of the vectors v1=(33.3793, 536.4621) and v2=(44.7848, 528.8015) . | 2 |
2005 | Find the projection of the vector v1=(33.3793, 536.4621) on the vector v2=(44.7848, 528.8015). | 2 |
2006 | Find the magnitude of the vector ∥v∥=(−1, 8) . | 2 |
2007 | Find the projection of the vector v1=(−1, 4) on the vector v2=(27, −45). | 2 |
2008 | Find the magnitude of the vector ∥v∥=(−46, −42) . | 2 |
2009 | Calculate the dot product of the vectors v1=(3, −3, 5) and v2=(−2, 4, −1) . | 2 |
2010 | Find the angle between vectors (−3, −7) and (4, −4). | 2 |
2011 | Find the sum of the vectors v1=(1, 4) and v2=(3, −1) . | 2 |
2012 | Calculate the dot product of the vectors v1=(1, 4) and v2=(3, −1) . | 2 |
2013 | Calculate the dot product of the vectors v1=(−1, 0) and v2=(0, 2) . | 2 |
2014 | Find the projection of the vector v1=(−19, −9, 16) on the vector v2=(−6, −2, 6). | 2 |
2015 | Find the sum of the vectors v1=(514, −1) and v2=(0, 2) . | 2 |
2016 | Find the sum of the vectors v1=(514, 1) and v2=(−1017, −1047) . | 2 |
2017 | Find the sum of the vectors v1=(10173, 10) and v2=(−1063, 568) . | 2 |
2018 | Find the magnitude of the vector ∥v∥=(3, 2) . | 2 |
2019 | Find the magnitude of the vector ∥v∥=(10173, 10) . | 2 |
2020 | Find the angle between vectors (10173, 10) and (−1063, 568). | 2 |
2021 | Determine whether the vectors v1=(1, 2) and v2=(3, 4) are linearly independent or dependent. | 2 |
2022 | Find the magnitude of the vector ∥v∥=(100071, 1000833, 200137) . | 2 |
2023 | Find the sum of the vectors v1=(15, 14) and v2=(4, 11) . | 2 |
2024 | Find the projection of the vector v1=(15.898, 25.441) on the vector v2=(6.84, 18.79). | 2 |
2025 | Find the difference of the vectors v1=(24, 10) and v2=(−15, 20) . | 2 |
2026 | Find the projection of the vector v1=(3, −2) on the vector v2=(5, 1). | 2 |
2027 | Find the magnitude of the vector ∥v∥=(−1, 25) . | 2 |
2028 | Calculate the dot product of the vectors v1=(135, 1312) and v2=(−4, 8) . | 2 |
2029 | Find the angle between vectors (135, 1312) and (−4, 8). | 2 |
2030 | Find the sum of the vectors v1=(4, 3) and v2=(2, 1) . | 2 |
2031 | Calculate the cross product of the vectors v1=(−7, −6, 9) and v2=(5, −3, 4) . | 2 |
2032 | Calculate the dot product of the vectors v1=(−1, 3) and v2=(1, 5) . | 2 |
2033 | Find the sum of the vectors v1=(0.2, 30) and v2=(0.2, 120) . | 2 |
2034 | Find the magnitude of the vector ∥v∥=(2, 3) . | 2 |
2035 | Calculate the dot product of the vectors v1=(3, −1, 2) and v2=(3, −4, 2) . | 2 |
2036 | Find the sum of the vectors v1=(4, 0) and v2=(1, 2) . | 2 |
2037 | Find the sum of the vectors v1=(1, 2) and v2=(4, 0) . | 2 |
2038 | Find the sum of the vectors v1=(1, 2) and v2=(−4, 2) . | 2 |
2039 | Find the sum of the vectors v1=(4, 0) and v2=(−3, 4) . | 2 |
2040 | Find the sum of the vectors v1=(2, 2) and v2=(2, 2) . | 2 |
2041 | Find the difference of the vectors v1=(0, −4) and v2=(2, −5) . | 2 |
2042 | Find the sum of the vectors v1=(1, 4) and v2=(3, 2) . | 2 |
2043 | Find the magnitude of the vector ∥v∥=(−1, 5) . | 2 |
2044 | Find the angle between vectors (526, −1043) and (−1071, −516). | 2 |
2045 | Calculate the dot product of the vectors v1=(425, −519) and v2=(−523, 411) . | 2 |
2046 | Find the projection of the vector v1=(−2, 6) on the vector v2=(−9, −3). | 2 |
2047 | Find the magnitude of the vector ∥v∥=(4, −2) . | 2 |
2048 | Find the magnitude of the vector ∥v∥=(543, −213) . | 2 |
2049 | Find the angle between vectors (3, 0) and (2, 0). | 2 |
2050 | Find the magnitude of the vector ∥v∥=(5, 0) . | 2 |