Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
2001 | Find the angle between vectors $ \left(4,~-4\right)$ and $\left(-12,~-12\right)$. | 2 |
2002 | Find the angle between vectors $ \left(4,~-4\right)$ and $\left(1,~-4\right)$. | 2 |
2003 | Find the angle between vectors $ \left(4,~-4\right)$ and $\left(-1,~-3\right)$. | 2 |
2004 | Calculate the dot product of the vectors $ \vec{v_1} = \left(33.3793,~536.4621\right) $ and $ \vec{v_2} = \left(44.7848,~528.8015\right) $ . | 2 |
2005 | Find the projection of the vector $ \vec{v_1} = \left(33.3793,~536.4621\right) $ on the vector $ \vec{v_2} = \left(44.7848,~528.8015\right) $. | 2 |
2006 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~8\right) $ . | 2 |
2007 | Find the projection of the vector $ \vec{v_1} = \left(-1,~4\right) $ on the vector $ \vec{v_2} = \left(\dfrac{ 7 }{ 2 },~-\dfrac{ 5 }{ 4 }\right) $. | 2 |
2008 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-46,~-42\right) $ . | 2 |
2009 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~-3,~5\right) $ and $ \vec{v_2} = \left(-2,~4,~-1\right) $ . | 2 |
2010 | Find the angle between vectors $ \left(-3,~-7\right)$ and $\left(4,~-4\right)$. | 2 |
2011 | Find the sum of the vectors $ \vec{v_1} = \left(1,~4\right) $ and $ \vec{v_2} = \left(3,~-1\right) $ . | 2 |
2012 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~4\right) $ and $ \vec{v_2} = \left(3,~-1\right) $ . | 2 |
2013 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~0\right) $ and $ \vec{v_2} = \left(0,~2\right) $ . | 2 |
2014 | Find the projection of the vector $ \vec{v_1} = \left(-19,~-9,~16\right) $ on the vector $ \vec{v_2} = \left(-6,~-2,~6\right) $. | 2 |
2015 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 14 }{ 5 },~-1\right) $ and $ \vec{v_2} = \left(0,~2\right) $ . | 2 |
2016 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 14 }{ 5 },~1\right) $ and $ \vec{v_2} = \left(-\dfrac{ 17 }{ 10 },~-\dfrac{ 47 }{ 10 }\right) $ . | 2 |
2017 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 173 }{ 10 },~10\right) $ and $ \vec{v_2} = \left(-\dfrac{ 63 }{ 10 },~\dfrac{ 68 }{ 5 }\right) $ . | 2 |
2018 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~2\right) $ . | 2 |
2019 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 173 }{ 10 },~10\right) $ . | 2 |
2020 | Find the angle between vectors $ \left(\dfrac{ 173 }{ 10 },~10\right)$ and $\left(-\dfrac{ 63 }{ 10 },~\dfrac{ 68 }{ 5 }\right)$. | 2 |
2021 | Determine whether the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(3,~4\right) $ are linearly independent or dependent. | 2 |
2022 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 71 }{ 1000 },~\dfrac{ 833 }{ 1000 },~\dfrac{ 137 }{ 200 }\right) $ . | 2 |
2023 | Find the sum of the vectors $ \vec{v_1} = \left(15,~14\right) $ and $ \vec{v_2} = \left(4,~11\right) $ . | 2 |
2024 | Find the projection of the vector $ \vec{v_1} = \left(15.898,~25.441\right) $ on the vector $ \vec{v_2} = \left(6.84,~18.79\right) $. | 2 |
2025 | Find the difference of the vectors $ \vec{v_1} = \left(24,~10\right) $ and $ \vec{v_2} = \left(-15,~20\right) $ . | 2 |
2026 | Find the projection of the vector $ \vec{v_1} = \left(3,~-2\right) $ on the vector $ \vec{v_2} = \left(5,~1\right) $. | 2 |
2027 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~25\right) $ . | 2 |
2028 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 5 }{ 13 },~\dfrac{ 12 }{ 13 }\right) $ and $ \vec{v_2} = \left(-4,~8\right) $ . | 2 |
2029 | Find the angle between vectors $ \left(\dfrac{ 5 }{ 13 },~\dfrac{ 12 }{ 13 }\right)$ and $\left(-4,~8\right)$. | 2 |
2030 | Find the sum of the vectors $ \vec{v_1} = \left(4,~3\right) $ and $ \vec{v_2} = \left(2,~1\right) $ . | 2 |
2031 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-7,~-6,~9\right) $ and $ \vec{v_2} = \left(5,~-3,~4\right) $ . | 2 |
2032 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~3\right) $ and $ \vec{v_2} = \left(1,~5\right) $ . | 2 |
2033 | Find the sum of the vectors $ \vec{v_1} = \left(0.2,~30\right) $ and $ \vec{v_2} = \left(0.2,~120\right) $ . | 2 |
2034 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~3\right) $ . | 2 |
2035 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~-1,~2\right) $ and $ \vec{v_2} = \left(3,~-4,~2\right) $ . | 2 |
2036 | Find the sum of the vectors $ \vec{v_1} = \left(4,~0\right) $ and $ \vec{v_2} = \left(1,~2\right) $ . | 2 |
2037 | Find the sum of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(4,~0\right) $ . | 2 |
2038 | Find the sum of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(-4,~2\right) $ . | 2 |
2039 | Find the sum of the vectors $ \vec{v_1} = \left(4,~0\right) $ and $ \vec{v_2} = \left(-3,~4\right) $ . | 2 |
2040 | Find the sum of the vectors $ \vec{v_1} = \left(2,~2\right) $ and $ \vec{v_2} = \left(2,~2\right) $ . | 2 |
2041 | Find the difference of the vectors $ \vec{v_1} = \left(0,~-4\right) $ and $ \vec{v_2} = \left(2,~-5\right) $ . | 2 |
2042 | Find the sum of the vectors $ \vec{v_1} = \left(1,~4\right) $ and $ \vec{v_2} = \left(3,~2\right) $ . | 2 |
2043 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~5\right) $ . | 2 |
2044 | Find the angle between vectors $ \left(\dfrac{ 26 }{ 5 },~-\dfrac{ 43 }{ 10 }\right)$ and $\left(-\dfrac{ 71 }{ 10 },~-\dfrac{ 16 }{ 5 }\right)$. | 2 |
2045 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 25 }{ 4 },~-\dfrac{ 19 }{ 5 }\right) $ and $ \vec{v_2} = \left(-\dfrac{ 23 }{ 5 },~\dfrac{ 11 }{ 4 }\right) $ . | 2 |
2046 | Find the projection of the vector $ \vec{v_1} = \left(-2,~6\right) $ on the vector $ \vec{v_2} = \left(-9,~-3\right) $. | 2 |
2047 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~-2\right) $ . | 2 |
2048 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 43 }{ 5 },~-\dfrac{ 13 }{ 2 }\right) $ . | 2 |
2049 | Find the angle between vectors $ \left(3,~0\right)$ and $\left(2,~0\right)$. | 2 |
2050 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~0\right) $ . | 2 |