Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1951 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~7\right) $ . | 2 |
1952 | Find the sum of the vectors $ \vec{v_1} = \left(3,~1\right) $ and $ \vec{v_2} = \left(-8,~4\right) $ . | 2 |
1953 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~3\right) $ and $ \vec{v_2} = \left(7,~1\right) $ . | 2 |
1954 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~0\right) $ and $ \vec{v_2} = \left(2,~-3\right) $ . | 2 |
1955 | Find the angle between vectors $ \left(3,~4\right)$ and $\left(2,~-1\right)$. | 2 |
1956 | Find the magnitude of the vector $ \| \vec{v} \| = \left(13,~5\right) $ . | 2 |
1957 | Find the projection of the vector $ \vec{v_1} = \left(5,~2,~5\right) $ on the vector $ \vec{v_2} = \left(2,~-1,~2\right) $. | 2 |
1958 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~6\right) $ and $ \vec{v_2} = \left(-3,~4\right) $ . | 2 |
1959 | Find the angle between vectors $ \left(\dfrac{ 7361 }{ 50 },~-85\right)$ and $\left(\dfrac{ 2121 }{ 100 },~\dfrac{ 2121 }{ 100 }\right)$. | 2 |
1960 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~-2\right) $ . | 2 |
1961 | Calculate the dot product of the vectors $ \vec{v_1} = \left(13,~0\right) $ and $ \vec{v_2} = \left(0,~-5\right) $ . | 2 |
1962 | Find the sum of the vectors $ \vec{v_1} = \left(13,~0\right) $ and $ \vec{v_2} = \left(0,~-5\right) $ . | 2 |
1963 | Find the magnitude of the vector $ \| \vec{v} \| = \left(13,~-5\right) $ . | 2 |
1964 | Find the angle between vectors $ \left(13,~0\right)$ and $\left(0,~-5\right)$. | 2 |
1965 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~3\right) $ . | 2 |
1966 | Find the angle between vectors $ \left(1,~3\right)$ and $\left(3,~-4\right)$. | 2 |
1967 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~1\right) $ . | 2 |
1968 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~1,~1\right) $ and $ \vec{v_2} = \left(1,~1,~1\right) $ . | 2 |
1969 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-5\right) $ and $ \vec{v_2} = \left(4,~7\right) $ . | 2 |
1970 | Find the difference of the vectors $ \vec{v_1} = \left(6,~2\right) $ and $ \vec{v_2} = \left(11,~-4\right) $ . | 2 |
1971 | Find the angle between vectors $ \left(-1,~2\right)$ and $\left(1,~1\right)$. | 2 |
1972 | Find the angle between vectors $ \left(0,~0,~45\right)$ and $\left(\dfrac{ 95373 }{ 10000 },~0,~\dfrac{ 95373 }{ 10000 }\right)$. | 2 |
1973 | Find the projection of the vector $ \vec{v_1} = \left(6,~1\right) $ on the vector $ \vec{v_2} = \left(5,~0\right) $. | 2 |
1974 | Find the difference of the vectors $ \vec{v_1} = \left(8,~0\right) $ and $ \vec{v_2} = \left(-20,~-16\right) $ . | 2 |
1975 | Find the difference of the vectors $ \vec{v_1} = \left(-24,~21\right) $ and $ \vec{v_2} = \left(2,~-1\right) $ . | 2 |
1976 | Find the projection of the vector $ \vec{v_1} = \left(-2,~0\right) $ on the vector $ \vec{v_2} = \left(3,~0\right) $. | 2 |
1977 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
1978 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~0\right) $ and $ \vec{v_2} = \left(0,~0\right) $ . | 2 |
1979 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~0\right) $ . | 2 |
1980 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~0\right) $ and $ \vec{v_2} = \left(1,~0\right) $ . | 2 |
1981 | Find the angle between vectors $ \left(2,~-6\right)$ and $\left(6,~2\right)$. | 2 |
1982 | Find the angle between vectors $ \left(2,~-2\right)$ and $\left(4,~2\right)$. | 2 |
1983 | Find the angle between vectors $ \left(2,~-5\right)$ and $\left(4,~2\right)$. | 2 |
1984 | Find the angle between vectors $ \left(3,~-1\right)$ and $\left(3,~1\right)$. | 2 |
1985 | Find the angle between vectors $ \left(4,~4\right)$ and $\left(-4,~4\right)$. | 2 |
1986 | Find the angle between vectors $ \left(3,~22\right)$ and $\left(7,~-3\right)$. | 2 |
1987 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
1988 | Find the angle between vectors $ \left(1,~1\right)$ and $\left(1,~1\right)$. | 2 |
1989 | Find the angle between vectors $ \left(1,~1\right)$ and $\left(1,~-1\right)$. | 2 |
1990 | Find the magnitude of the vector $ \| \vec{v} \| = \left(12,~15\right) $ . | 2 |
1991 | Find the sum of the vectors $ \vec{v_1} = \left(8,~4\right) $ and $ \vec{v_2} = \left(-9,~15\right) $ . | 2 |
1992 | Find the sum of the vectors $ \vec{v_1} = \left(-12,~-6\right) $ and $ \vec{v_2} = \left(-3,~5\right) $ . | 2 |
1993 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~5\right) $ . | 2 |
1994 | Find the angle between vectors $ \left(2,~5\right)$ and $\left(1,~2\right)$. | 2 |
1995 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~5\right) $ and $ \vec{v_2} = \left(1,~2\right) $ . | 2 |
1996 | Find the magnitude of the vector $ \| \vec{v} \| = \left(32,~8\right) $ . | 2 |
1997 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~1\right) $ and $ \vec{v_2} = \left(-3,~0\right) $ . | 2 |
1998 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~-2\right) $ . | 2 |
1999 | Find the projection of the vector $ \vec{v_1} = \left(4,~-4\right) $ on the vector $ \vec{v_2} = \left(6,~-6\right) $. | 2 |
2000 | Find the angle between vectors $ \left(4,~-4\right)$ and $\left(6,~-6\right)$. | 2 |