Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1901 | Determine whether the vectors $ \vec{v_1} = \left(3,~5\right) $ and $ \vec{v_2} = \left(2,~4\right) $ are linearly independent or dependent. | 2 |
1902 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~2\right) $ and $ \vec{v_2} = \left(-2,~4\right) $ . | 2 |
1903 | Find the angle between vectors $ \left(4,~2\right)$ and $\left(-2,~4\right)$. | 2 |
1904 | Find the difference of the vectors $ \vec{v_1} = \left(-5,~6\right) $ and $ \vec{v_2} = \left(-3,~-8\right) $ . | 2 |
1905 | Find the angle between vectors $ \left(-2,~5\right)$ and $\left(6,~2\right)$. | 2 |
1906 | Find the magnitude of the vector $ \| \vec{v} \| = \left(9,~-4,~6\right) $ . | 2 |
1907 | Find the sum of the vectors $ \vec{v_1} = \left(1,~3\right) $ and $ \vec{v_2} = \left(3,~1\right) $ . | 2 |
1908 | Calculate the cross product of the vectors $ \vec{v_1} = \left(2,~3,~0\right) $ and $ \vec{v_2} = \left(2,~0,~-1\right) $ . | 2 |
1909 | Find the angle between vectors $ \left(-4,~3\right)$ and $\left(5,~12\right)$. | 2 |
1910 | Find the projection of the vector $ \vec{v_1} = \left(5,~12\right) $ on the vector $ \vec{v_2} = \left(-4,~3\right) $. | 2 |
1911 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~0\right) $ . | 2 |
1912 | Find the projection of the vector $ \vec{v_1} = \left(2,~5\right) $ on the vector $ \vec{v_2} = \left(-2,~1\right) $. | 2 |
1913 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~4\right) $ . | 2 |
1914 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~4\right) $ . | 2 |
1915 | Find the sum of the vectors $ \vec{v_1} = \left(14,~-10\right) $ and $ \vec{v_2} = \left(9,~-4\right) $ . | 2 |
1916 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~-1\right) $ . | 2 |
1917 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-6,~6\right) $ . | 2 |
1918 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~2\right) $ . | 2 |
1919 | Find the difference of the vectors $ \vec{v_1} = \left(0,~4\right) $ and $ \vec{v_2} = \left(4,~7\right) $ . | 2 |
1920 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~2 \sqrt{ 3 }\right) $ . | 2 |
1921 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~0,~3\right) $ and $ \vec{v_2} = \left(-2,~3,~6\right) $ . | 2 |
1922 | Calculate the cross product of the vectors $ \vec{v_1} = \left(4,~0,~3\right) $ and $ \vec{v_2} = \left(-2,~3,~6\right) $ . | 2 |
1923 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~3\right) $ and $ \vec{v_2} = \left(2,~1\right) $ . | 2 |
1924 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~3\right) $ and $ \vec{v_2} = \left(3,~2\right) $ . | 2 |
1925 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 83 }{ 5 },~\dfrac{ 147 }{ 10 }\right) $ . | 2 |
1926 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-6,~-3\right) $ and $ \vec{v_2} = \left(-9,~-8\right) $ . | 2 |
1927 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-9,~-8\right) $ and $ \vec{v_2} = \left(-6,~-3\right) $ . | 2 |
1928 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-9,~8\right) $ and $ \vec{v_2} = \left(-4,~7\right) $ . | 2 |
1929 | Find the angle between vectors $ \left(-9,~1\right)$ and $\left(8,~5\right)$. | 2 |
1930 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~1\right) $ . | 2 |
1931 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~2\right) $ . | 2 |
1932 | Find the angle between vectors $ \left(2,~2\right)$ and $\left(4,~-5\right)$. | 2 |
1933 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~2\right) $ and $ \vec{v_2} = \left(4,~-5\right) $ . | 2 |
1934 | Determine whether the vectors $ \vec{v_1} = \left(2,~2\right) $ and $ \vec{v_2} = \left(4,~-5\right) $ are linearly independent or dependent. | 2 |
1935 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~3\right) $ . | 2 |
1936 | Find the sum of the vectors $ \vec{v_1} = \left(2,~6\right) $ and $ \vec{v_2} = \left(3,~-2\right) $ . | 2 |
1937 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-15,~0,~20\right) $ and $ \vec{v_2} = \left(0,~50,~0\right) $ . | 2 |
1938 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~5\right) $ . | 2 |
1939 | Find the difference of the vectors $ \vec{v_1} = \left(2,~5\right) $ and $ \vec{v_2} = \left(-3,~-7\right) $ . | 2 |
1940 | Find the angle between vectors $ \left(7,~4\right)$ and $\left(7,~4\right)$. | 2 |
1941 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(5,~5\right) $ . | 2 |
1942 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~3\right) $ . | 2 |
1943 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-6,~3\right) $ and $ \vec{v_2} = \left(-1,~1\right) $ . | 2 |
1944 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-6,~3\right) $ . | 2 |
1945 | Find the difference of the vectors $ \vec{v_1} = \left(-6,~3\right) $ and $ \vec{v_2} = \left(-1,~1\right) $ . | 2 |
1946 | Find the sum of the vectors $ \vec{v_1} = \left(-6,~3\right) $ and $ \vec{v_2} = \left(-1,~1\right) $ . | 2 |
1947 | Find the sum of the vectors $ \vec{v_1} = \left(0,~0\right) $ and $ \vec{v_2} = \left(0,~3\right) $ . | 2 |
1948 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~8\right) $ and $ \vec{v_2} = \left(-5,~5\right) $ . | 2 |
1949 | Find the sum of the vectors $ \vec{v_1} = \left(-5,~1\right) $ and $ \vec{v_2} = \left(-8,~6\right) $ . | 2 |
1950 | Find the difference of the vectors $ \vec{v_1} = \left(-5,~1\right) $ and $ \vec{v_2} = \left(-8,~6\right) $ . | 2 |