Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1851 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~-2\right) $ . | 2 |
1852 | Find the difference of the vectors $ \vec{v_1} = \left(12,~2\right) $ and $ \vec{v_2} = \left(2,~4\right) $ . | 2 |
1853 | Find the projection of the vector $ \vec{v_1} = \left(-4,~3\right) $ on the vector $ \vec{v_2} = \left(0,~0\right) $. | 2 |
1854 | Find the sum of the vectors $ \vec{v_1} = \left(6,~7\right) $ and $ \vec{v_2} = \left(3,~4\right) $ . | 2 |
1855 | Find the angle between vectors $ \left(6,~7\right)$ and $\left(6,~-7\right)$. | 2 |
1856 | Find the sum of the vectors $ \vec{v_1} = \left(-\dfrac{ 3 }{ 4 },~\dfrac{ 147 }{ 50 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 281 }{ 100 },~\dfrac{ 53 }{ 100 }\right) $ . | 2 |
1857 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~8\right) $ . | 2 |
1858 | Find the sum of the vectors $ \vec{v_1} = \left(6,~8\right) $ and $ \vec{v_2} = \left(-4,~3\right) $ . | 2 |
1859 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~8\right) $ and $ \vec{v_2} = \left(9,~-2\right) $ . | 2 |
1860 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~8\right) $ . | 2 |
1861 | Find the angle between vectors $ \left(89,~157\right)$ and $\left(237,~326\right)$. | 2 |
1862 | Find the difference of the vectors $ \vec{v_1} = \left(89,~157\right) $ and $ \vec{v_2} = \left(237,~326\right) $ . | 2 |
1863 | Find the sum of the vectors $ \vec{v_1} = \left(89,~157\right) $ and $ \vec{v_2} = \left(237,~326\right) $ . | 2 |
1864 | Calculate the dot product of the vectors $ \vec{v_1} = \left(89,~157\right) $ and $ \vec{v_2} = \left(237,~326\right) $ . | 2 |
1865 | Calculate the cross product of the vectors $ \vec{v_1} = \left(3,~0,~2\right) $ and $ \vec{v_2} = \left(0,~3,~1\right) $ . | 2 |
1866 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(-1,~2\right) $ . | 2 |
1867 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~2\right) $ and $ \vec{v_2} = \left(-4,~12\right) $ . | 2 |
1868 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~0\right) $ and $ \vec{v_2} = \left(-2,~2\right) $ . | 2 |
1869 | Find the angle between vectors $ \left(-3,~1\right)$ and $\left(-9,~3\right)$. | 2 |
1870 | Find the angle between vectors $ \left(-\sqrt{ 3 },~-1\right)$ and $\left(2,~2 \sqrt{ 3 }\right)$. | 2 |
1871 | Find the angle between vectors $ \left(-3,~3\right)$ and $\left(9,~-9\right)$. | 2 |
1872 | Determine whether the vectors $ \vec{v_1} = \left(-1,~-2\right) $ and $ \vec{v_2} = \left(8,~-4\right) $ are linearly independent or dependent. | 2 |
1873 | Determine whether the vectors $ \vec{v_1} = \left(1,~-1\right) $ and $ \vec{v_2} = \left(-1,~-1\right) $ are linearly independent or dependent. | 2 |
1874 | Determine whether the vectors $ \vec{v_1} = \left(-6,~2\right) $ and $ \vec{v_2} = \left(-12,~36\right) $ are linearly independent or dependent. | 2 |
1875 | Determine whether the vectors $ \vec{v_1} = \left(6,~2\right) $ and $ \vec{v_2} = \left(-12,~36\right) $ are linearly independent or dependent. | 2 |
1876 | Find the sum of the vectors $ \vec{v_1} = \left(4,~3\right) $ and $ \vec{v_2} = \left(7,~0\right) $ . | 2 |
1877 | Find the difference of the vectors $ \vec{v_1} = \left(0,~5\right) $ and $ \vec{v_2} = \left(1,~0\right) $ . | 2 |
1878 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~3,~2\right) $ . | 2 |
1879 | Find the angle between vectors $ \left(-3,~1,~2\right)$ and $\left(1,~0,~2\right)$. | 2 |
1880 | Find the sum of the vectors $ \vec{v_1} = \left(-4,~-5\right) $ and $ \vec{v_2} = \left(5,~-2\right) $ . | 2 |
1881 | Find the difference of the vectors $ \vec{v_1} = \left(170,~0\right) $ and $ \vec{v_2} = \left(-85,~140\right) $ . | 2 |
1882 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-4,~1\right) $ and $ \vec{v_2} = \left(3,~-4\right) $ . | 2 |
1883 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 3 }{ 20 },~\dfrac{ 1 }{ 5 }\right) $ . | 2 |
1884 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~4\right) $ and $ \vec{v_2} = \left(-4,~7\right) $ . | 2 |
1885 | Find the magnitude of the vector $ \| \vec{v} \| = \left(10,~0\right) $ . | 2 |
1886 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~\sqrt{ 8 }\right) $ . | 2 |
1887 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-6,~-1\right) $ . | 2 |
1888 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~-8\right) $ . | 2 |
1889 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~-3\right) $ and $ \vec{v_2} = \left(-1,~0\right) $ . | 2 |
1890 | Find the angle between vectors $ \left(\dfrac{ 3 }{ 4 },~2\right)$ and $\left(3,~-2\right)$. | 2 |
1891 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~-\dfrac{ 3 }{ 2 }\right) $ and $ \vec{v_2} = \left(-\dfrac{ 3 }{ 2 },~\dfrac{ 15 }{ 2 }\right) $ . | 2 |
1892 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(1,~\dfrac{ 1 }{ 4 }\right) $ . | 2 |
1893 | Determine whether the vectors $ \vec{v_1} = \left(1,~-1\right) $ and $ \vec{v_2} = \left(1,~1\right) $ are linearly independent or dependent. | 2 |
1894 | Find the difference of the vectors $ \vec{v_1} = \left(4,~-10\right) $ and $ \vec{v_2} = \left(-9,~-6\right) $ . | 2 |
1895 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~1\right) $ . | 2 |
1896 | Find the sum of the vectors $ \vec{v_1} = \left(-8,~-5\right) $ and $ \vec{v_2} = \left(4,~9\right) $ . | 2 |
1897 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-2\right) $ and $ \vec{v_2} = \left(3,~5\right) $ . | 2 |
1898 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-20,~-25\right) $ and $ \vec{v_2} = \left(4,~-4\right) $ . | 2 |
1899 | Determine whether the vectors $ \vec{v_1} = \left(1,~-5,~0\right) $, $ \vec{v_2} = \left(2,~-4,~3\right) $ and $ \vec{v_3} = \left(0,~-3,~-2\right)$ are linearly independent or dependent. | 2 |
1900 | Find the sum of the vectors $ \vec{v_1} = \left(-20,~-25\right) $ and $ \vec{v_2} = \left(4,~-4\right) $ . | 2 |