Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1801 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-11,~5\right) $ . | 2 |
1802 | Find the angle between vectors $ \left(2,~-1.5,~-0.5\right)$ and $\left(0,~1,~0\right)$. | 2 |
1803 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(1,~5\right) $ . | 2 |
1804 | Find the projection of the vector $ \vec{v_1} = \left(1,~-1\right) $ on the vector $ \vec{v_2} = \left(-3,~-2\right) $. | 2 |
1805 | Find the angle between vectors $ \left(2,~3\right)$ and $\left(-1,~-2\right)$. | 2 |
1806 | Find the magnitude of the vector $ \| \vec{v} \| = \left(34,~16\right) $ . | 2 |
1807 | Find the sum of the vectors $ \vec{v_1} = \left(2,~2\right) $ and $ \vec{v_2} = \left(-2,~4\right) $ . | 2 |
1808 | Find the difference of the vectors $ \vec{v_1} = \left(2,~2\right) $ and $ \vec{v_2} = \left(-2,~4\right) $ . | 2 |
1809 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(-1,~9\right) $ . | 2 |
1810 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~-3\right) $ . | 2 |
1811 | Find the angle between vectors $ \left(3,~1\right)$ and $\left(-3,~3\right)$. | 2 |
1812 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~-1\right) $ . | 2 |
1813 | Determine whether the vectors $ \vec{v_1} = \left(0,~0,~0\right) $, $ \vec{v_2} = \left(0,~0,~0\right) $ and $ \vec{v_3} = \left(0,~0,~0\right)$ are linearly independent or dependent. | 2 |
1814 | Find the angle between vectors $ \left(2,~1,~-1\right)$ and $\left(-1,~-2,~5\right)$. | 2 |
1815 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~3,~-1\right) $ . | 2 |
1816 | Calculate the cross product of the vectors $ \vec{v_1} = \left(3,~1,~-2\right) $ and $ \vec{v_2} = \left(4,~1,~1\right) $ . | 2 |
1817 | Find the difference of the vectors $ \vec{v_1} = \left(10,~8\right) $ and $ \vec{v_2} = \left(-4,~10\right) $ . | 2 |
1818 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~3\right) $ . | 2 |
1819 | Find the angle between vectors $ \left(6,~-5,~-3\right)$ and $\left(4,~2,~2\right)$. | 2 |
1820 | Find the sum of the vectors $ \vec{v_1} = \left(5,~2\right) $ and $ \vec{v_2} = \left(9,~8\right) $ . | 2 |
1821 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~2\right) $ and $ \vec{v_2} = \left(5,~2\right) $ . | 2 |
1822 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~3\right) $ and $ \vec{v_2} = \left(4,~-1\right) $ . | 2 |
1823 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~2\right) $ . | 2 |
1824 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-2,~7\right) $ and $ \vec{v_2} = \left(-5,~-8\right) $ . | 2 |
1825 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~-2\right) $ . | 2 |
1826 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 13271 }{ 1000 },~-\dfrac{ 773789 }{ 10000 }\right) $ . | 2 |
1827 | Find the sum of the vectors $ \vec{v_1} = \left(5.2094,~29.5442\right) $ and $ \vec{v_2} = \left(-20,~-34.641\right) $ . | 2 |
1828 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 55651 }{ 10000 },~\dfrac{ 5327 }{ 625 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 13 }{ 2 },~-11.2583\right) $ . | 2 |
1829 | Find the sum of the vectors $ \vec{v_1} = \left(4,~3\right) $ and $ \vec{v_2} = \left(4,~-4\right) $ . | 2 |
1830 | Find the sum of the vectors $ \vec{v_1} = \left(4,~3\right) $ and $ \vec{v_2} = \left(-13,~-7\right) $ . | 2 |
1831 | Find the difference of the vectors $ \vec{v_1} = \left(5,~7\right) $ and $ \vec{v_2} = \left(7,~3\right) $ . | 2 |
1832 | Find the magnitude of the vector $ \| \vec{v} \| = \left(12.6,~13.2\right) $ . | 2 |
1833 | Find the difference of the vectors $ \vec{v_1} = \left(12.6,~13.2\right) $ and $ \vec{v_2} = \left(4.73,~-4.99\right) $ . | 2 |
1834 | Find the angle between vectors $ \left(7,~2\right)$ and $\left(21,~6\right)$. | 2 |
1835 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 41 }{ 10 },~\dfrac{ 9 }{ 10 }\right) $ . | 2 |
1836 | Find the difference of the vectors $ \vec{v_1} = \left(4,~-7\right) $ and $ \vec{v_2} = \left(2,~3\right) $ . | 2 |
1837 | Find the sum of the vectors $ \vec{v_1} = \left(3,~1\right) $ and $ \vec{v_2} = \left(-1,~4\right) $ . | 2 |
1838 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~1\right) $ and $ \vec{v_2} = \left(-1,~4\right) $ . | 2 |
1839 | Find the difference of the vectors $ \vec{v_1} = \left(-1,~2\right) $ and $ \vec{v_2} = \left(-3,~3\right) $ . | 2 |
1840 | Find the difference of the vectors $ \vec{v_1} = \left(3,~2\right) $ and $ \vec{v_2} = \left(2,~3\right) $ . | 2 |
1841 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~-3\right) $ . | 2 |
1842 | Calculate the cross product of the vectors $ \vec{v_1} = \left(0,~1,~-2\right) $ and $ \vec{v_2} = \left(5,~0,~-5\right) $ . | 2 |
1843 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~3\right) $ and $ \vec{v_2} = \left(4,~4\right) $ . | 2 |
1844 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~3\right) $ . | 2 |
1845 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(2,~6\right) $ . | 2 |
1846 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~2\right) $ . | 2 |
1847 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~6\right) $ . | 2 |
1848 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~2\right) $ . | 2 |
1849 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~2\right) $ and $ \vec{v_2} = \left(3,~4\right) $ . | 2 |
1850 | Find the projection of the vector $ \vec{v_1} = \left(-2,~2\right) $ on the vector $ \vec{v_2} = \left(3,~4\right) $. | 2 |