Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1751 | Find the sum of the vectors $ \vec{v_1} = \left(5,~-2\right) $ and $ \vec{v_2} = \left(-2,~3\right) $ . | 2 |
1752 | Find the sum of the vectors $ \vec{v_1} = \left(4,~7\right) $ and $ \vec{v_2} = \left(8,~9\right) $ . | 2 |
1753 | Calculate the dot product of the vectors $ \vec{v_1} = \left(7,~-3\right) $ and $ \vec{v_2} = \left(-10,~-8\right) $ . | 2 |
1754 | Find the sum of the vectors $ \vec{v_1} = \left(5,~0\right) $ and $ \vec{v_2} = \left(3,~0\right) $ . | 2 |
1755 | Find the sum of the vectors $ \vec{v_1} = \left(5,~0\right) $ and $ \vec{v_2} = \left(0,~3\right) $ . | 2 |
1756 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(-2,~-1\right) $ . | 2 |
1757 | Find the angle between vectors $ \left(3,~4\right)$ and $\left(-2,~-1\right)$. | 2 |
1758 | Find the magnitude of the vector $ \| \vec{v} \| = \left(13,~2\right) $ . | 2 |
1759 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 39 }{ 10 },~0\right) $ . | 2 |
1760 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 39 }{ 10 },~\dfrac{ 23 }{ 20 }\right) $ . | 2 |
1761 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~1,~1\right) $ and $ \vec{v_2} = \left(1,~-1,~0\right) $ . | 2 |
1762 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~4\right) $ and $ \vec{v_2} = \left(2,~-1\right) $ . | 2 |
1763 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~4\right) $ . | 2 |
1764 | Determine whether the vectors $ \vec{v_1} = \left(-0.3333,~-1.5\right) $ and $ \vec{v_2} = \left(2,~9\right) $ are linearly independent or dependent. | 2 |
1765 | Find the projection of the vector $ \vec{v_1} = \left(-0.3333,~-1.5\right) $ on the vector $ \vec{v_2} = \left(2,~9\right) $. | 2 |
1766 | Find the angle between vectors $ \left(0,~2\right)$ and $\left(2,~1\right)$. | 2 |
1767 | Find the angle between vectors $ \left(1,~2\right)$ and $\left(2,~1\right)$. | 2 |
1768 | Find the angle between vectors $ \left(3,~2\right)$ and $\left(2,~1\right)$. | 2 |
1769 | Find the angle between vectors $ \left(-7,~2\right)$ and $\left(2,~1\right)$. | 2 |
1770 | Find the angle between vectors $ \left(-5,~2\right)$ and $\left(2,~1\right)$. | 2 |
1771 | Find the angle between vectors $ \left(-2,~2\right)$ and $\left(2,~1\right)$. | 2 |
1772 | Determine whether the vectors $ \vec{v_1} = \left(5,~6\right) $ and $ \vec{v_2} = \left(10,~5\right) $ are linearly independent or dependent. | 2 |
1773 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~6\right) $ and $ \vec{v_2} = \left(10,~5\right) $ . | 2 |
1774 | Find the angle between vectors $ \left(-4,~-3\right)$ and $\left(4,~3\right)$. | 2 |
1775 | Find the angle between vectors $ \left(-4,~-3\right)$ and $\left(3,~4\right)$. | 2 |
1776 | Determine whether the vectors $ \vec{v_1} = \left(1,~3\right) $ and $ \vec{v_2} = \left(1,~4\right) $ are linearly independent or dependent. | 2 |
1777 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 21 }{ 10 },~-\dfrac{ 16 }{ 5 }\right) $ and $ \vec{v_2} = \left(0,~0\right) $ . | 2 |
1778 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~5\right) $ . | 2 |
1779 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~3\right) $ and $ \vec{v_2} = \left(-1,~-2\right) $ . | 2 |
1780 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~\sqrt{ 29 }\right) $ and $ \vec{v_2} = \left(0,~0\right) $ . | 2 |
1781 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~0\right) $ and $ \vec{v_2} = \left(0,~0\right) $ . | 2 |
1782 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~-1\right) $ . | 2 |
1783 | Find the sum of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(-1,~3\right) $ . | 2 |
1784 | Find the sum of the vectors $ \vec{v_1} = \left(6,~8\right) $ and $ \vec{v_2} = \left(-2,~-4\right) $ . | 2 |
1785 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~-2\right) $ . | 2 |
1786 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~6\right) $ . | 2 |
1787 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~2\right) $ . | 2 |
1788 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-7,~-3\right) $ and $ \vec{v_2} = \left(-9,~-3\right) $ . | 2 |
1789 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~-1\right) $ and $ \vec{v_2} = \left(-9,~-2\right) $ . | 2 |
1790 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~2,~-3\right) $ . | 2 |
1791 | Find the angle between vectors $ \left(2,~-2,~2\right)$ and $\left(1,~1,~1\right)$. | 2 |
1792 | Find the angle between vectors $ \left(1,~-2,~-1\right)$ and $\left(1,~0,~-1\right)$. | 2 |
1793 | Find the difference of the vectors $ \vec{v_1} = \left(6,~6,~6\right) $ and $ \vec{v_2} = \left(1,~-1,~1\right) $ . | 2 |
1794 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~-2,~-1\right) $ and $ \vec{v_2} = \left(1,~0,~-1\right) $ . | 2 |
1795 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~5\right) $ . | 2 |
1796 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~-3\right) $ . | 2 |
1797 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~-2\right) $ and $ \vec{v_2} = \left(4,~5\right) $ . | 2 |
1798 | Find the angle between vectors $ \left(2,~5\right)$ and $\left(4,~-3\right)$. | 2 |
1799 | Find the projection of the vector $ \vec{v_1} = \left(-2,~9\right) $ on the vector $ \vec{v_2} = \left(-1,~2\right) $. | 2 |
1800 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~-3\right) $ . | 2 |