Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1501 | Calculate the cross product of the vectors $ \vec{v_1} = \left(7,~8,~9\right) $ and $ \vec{v_2} = \left(2,~3,~1\right) $ . | 2 |
1502 | Find the sum of the vectors $ \vec{v_1} = \left(5,~0\right) $ and $ \vec{v_2} = \left(0,~-5\right) $ . | 2 |
1503 | Find the sum of the vectors $ \vec{v_1} = \left(0,~5\right) $ and $ \vec{v_2} = \left(-5,~0\right) $ . | 2 |
1504 | Find the sum of the vectors $ \vec{v_1} = \left(0,~34\right) $ and $ \vec{v_2} = \left(34,~0\right) $ . | 2 |
1505 | Calculate the dot product of the vectors $ \vec{v_1} = \left(7,~6\right) $ and $ \vec{v_2} = \left(-5,~9\right) $ . | 2 |
1506 | Find the projection of the vector $ \vec{v_1} = \left(-2,~4\right) $ on the vector $ \vec{v_2} = \left(0,~0\right) $. | 2 |
1507 | Determine whether the vectors $ \vec{v_1} = \left(-2,~4\right) $ and $ \vec{v_2} = \left(0,~0\right) $ are linearly independent or dependent. | 2 |
1508 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0.1111,~0.8889\right) $ . | 2 |
1509 | Find the magnitude of the vector $ \| \vec{v} \| = \left(10,~12\right) $ . | 2 |
1510 | Find the magnitude of the vector $ \| \vec{v} \| = \left(10,~12\right) $ . | 2 |
1511 | Find the difference of the vectors $ \vec{v_1} = \left(10,~12\right) $ and $ \vec{v_2} = \left(4,~20\right) $ . | 2 |
1512 | Find the angle between vectors $ \left(-6,~13\right)$ and $\left(1,~0\right)$. | 2 |
1513 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-6,~13\right) $ . | 2 |
1514 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-6,~13\right) $ and $ \vec{v_2} = \left(-42,~-34\right) $ . | 2 |
1515 | Find the difference of the vectors $ \vec{v_1} = \left(330,~0\right) $ and $ \vec{v_2} = \left(170,~-120\right) $ . | 2 |
1516 | Find the difference of the vectors $ \vec{v_1} = \left(330,~0\right) $ and $ \vec{v_2} = \left(175,~-120\right) $ . | 2 |
1517 | Find the difference of the vectors $ \vec{v_1} = \left(330,~0\right) $ and $ \vec{v_2} = \left(200,~-120\right) $ . | 2 |
1518 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~1,~-3\right) $ . | 2 |
1519 | Calculate the cross product of the vectors $ \vec{v_1} = \left(3,~0,~4\right) $ and $ \vec{v_2} = \left(-2,~2,~1\right) $ . | 2 |
1520 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 1 }{ 9 },~\dfrac{ 8 }{ 9 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 1 }{ 4 },~\dfrac{ 3 }{ 4 }\right) $ . | 2 |
1521 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 1 }{ 9 },~\dfrac{ 8 }{ 9 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 1 }{ 4 },~\dfrac{ 3 }{ 4 }\right) $ . | 2 |
1522 | Determine whether the vectors $ \vec{v_1} = \left(\dfrac{ 1 }{ 9 },~\dfrac{ 8 }{ 9 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 1 }{ 4 },~\dfrac{ 3 }{ 4 }\right) $ are linearly independent or dependent. | 2 |
1523 | Find the difference of the vectors $ \vec{v_1} = \left(\dfrac{ 1 }{ 9 },~\dfrac{ 8 }{ 9 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 1 }{ 4 },~\dfrac{ 3 }{ 4 }\right) $ . | 2 |
1524 | Find the angle between vectors $ \left(\dfrac{ 1 }{ 9 },~\dfrac{ 8 }{ 9 }\right)$ and $\left(\dfrac{ 1 }{ 4 },~\dfrac{ 3 }{ 4 }\right)$. | 2 |
1525 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 1 }{ 9 },~\dfrac{ 1 }{ 4 }\right) $ . | 2 |
1526 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 1 }{ 9 },~\dfrac{ 1 }{ 4 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 8 }{ 9 },~\dfrac{ 3 }{ 4 }\right) $ . | 2 |
1527 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 1 }{ 9 },~\dfrac{ 1 }{ 4 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 8 }{ 9 },~\dfrac{ 3 }{ 4 }\right) $ . | 2 |
1528 | Find the difference of the vectors $ \vec{v_1} = \left(\dfrac{ 1 }{ 9 },~\dfrac{ 1 }{ 4 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 8 }{ 9 },~\dfrac{ 3 }{ 4 }\right) $ . | 2 |
1529 | Determine whether the vectors $ \vec{v_1} = \left(\dfrac{ 1 }{ 9 },~\dfrac{ 1 }{ 4 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 8 }{ 9 },~\dfrac{ 3 }{ 4 }\right) $ are linearly independent or dependent. | 2 |
1530 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~17\right) $ . | 2 |
1531 | Find the angle between vectors $ \left(16,~-6\right)$ and $\left(3,~1\right)$. | 2 |
1532 | Find the sum of the vectors $ \vec{v_1} = \left(8,~4\right) $ and $ \vec{v_2} = \left(-3,~-1\right) $ . | 2 |
1533 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~3\right) $ . | 2 |
1534 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~2,~3\right) $ . | 2 |
1535 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~1\right) $ . | 2 |
1536 | Find the difference of the vectors $ \vec{v_1} = \left(-3,~0\right) $ and $ \vec{v_2} = \left(5,~0\right) $ . | 2 |
1537 | Find the angle between vectors $ \left(30,~0\right)$ and $\left(47,~0\right)$. | 2 |
1538 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3090,~-2954\right) $ . | 2 |
1539 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~9\right) $ . | 2 |
1540 | Find the sum of the vectors $ \vec{v_1} = \left(2,~9\right) $ and $ \vec{v_2} = \left(9,~0\right) $ . | 2 |
1541 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~5\right) $ . | 2 |
1542 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~7\right) $ and $ \vec{v_2} = \left(-1,~-3\right) $ . | 2 |
1543 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~-2\right) $ and $ \vec{v_2} = \left(-1,~-3\right) $ . | 2 |
1544 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~-4,~2\right) $ and $ \vec{v_2} = \left(3,~3,~-2\right) $ . | 2 |
1545 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~2,~1\right) $ and $ \vec{v_2} = \left(2,~-1,~0\right) $ . | 2 |
1546 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~4\right) $ and $ \vec{v_2} = \left(7,~-1\right) $ . | 2 |
1547 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~1,~1\right) $ and $ \vec{v_2} = \left(1,~2,~1\right) $ . | 2 |
1548 | Find the sum of the vectors $ \vec{v_1} = \left(-48,~64\right) $ and $ \vec{v_2} = \left(54,~27\right) $ . | 2 |
1549 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~8\right) $ and $ \vec{v_2} = \left(3,~-1\right) $ . | 2 |
1550 | Find the angle between vectors $ \left(3,~-2\right)$ and $\left(-3,~7\right)$. | 2 |