Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1551 | Find the difference of the vectors $ \vec{v_1} = \left(\dfrac{ 17043 }{ 10 },~\dfrac{ 31 }{ 5 },~-\dfrac{ 5772 }{ 5 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 8611 }{ 5 },~\dfrac{ 13 }{ 2 },~-\dfrac{ 5748 }{ 5 }\right) $ . | 2 |
1552 | Calculate the cross product of the vectors $ \vec{v_1} = \left(2,~1,~1\right) $ and $ \vec{v_2} = \left(0,~2,~1\right) $ . | 2 |
1553 | Find the sum of the vectors $ \vec{v_1} = \left(1,~1\right) $ and $ \vec{v_2} = \left(2,~2\right) $ . | 2 |
1554 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
1555 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~0\right) $ and $ \vec{v_2} = \left(1,~1\right) $ . | 2 |
1556 | Find the angle between vectors $ \left(0,~1\right)$ and $\left(1,~1\right)$. | 2 |
1557 | Determine whether the vectors $ \vec{v_1} = \left(0,~1\right) $ and $ \vec{v_2} = \left(1,~1\right) $ are linearly independent or dependent. | 2 |
1558 | Find the projection of the vector $ \vec{v_1} = \left(0,~1\right) $ on the vector $ \vec{v_2} = \left(1,~1\right) $. | 2 |
1559 | Find the sum of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(2,~2\right) $ . | 2 |
1560 | Find the sum of the vectors $ \vec{v_1} = \left(3,~7\right) $ and $ \vec{v_2} = \left(-8,~4\right) $ . | 2 |
1561 | Find the angle between vectors $ \left(9,~6\right)$ and $\left(-4,~5\right)$. | 2 |
1562 | Calculate the dot product of the vectors $ \vec{v_1} = \left(9,~6\right) $ and $ \vec{v_2} = \left(-4,~6\right) $ . | 2 |
1563 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~-5\right) $ . | 2 |
1564 | Find the difference of the vectors $ \vec{v_1} = \left(-5,~6\right) $ and $ \vec{v_2} = \left(-1,~-5\right) $ . | 2 |
1565 | Find the sum of the vectors $ \vec{v_1} = \left(120000,~30\right) $ and $ \vec{v_2} = \left(40000,~-90\right) $ . | 2 |
1566 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~2\right) $ and $ \vec{v_2} = \left(1,~-4\right) $ . | 2 |
1567 | Find the difference of the vectors $ \vec{v_1} = \left(-8,~-3\right) $ and $ \vec{v_2} = \left(-5,~-8\right) $ . | 2 |
1568 | Find the difference of the vectors $ \vec{v_1} = \left(-1,~9\right) $ and $ \vec{v_2} = \left(-2,~-4\right) $ . | 2 |
1569 | Find the angle between vectors $ \left(\dfrac{ 7 }{ 5 },~\dfrac{ 121 }{ 50 }\right)$ and $\left(\dfrac{ 19 }{ 20 },~\dfrac{ 33 }{ 20 }\right)$. | 2 |
1570 | Find the angle between vectors $ \left(1,~0\right)$ and $\left(0,~1\right)$. | 2 |
1571 | Find the magnitude of the vector $ \| \vec{v} \| = \left(30,~0\right) $ . | 2 |
1572 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-1\right) $ and $ \vec{v_2} = \left(-3,~2\right) $ . | 2 |
1573 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-12,~5\right) $ . | 2 |
1574 | Determine whether the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(-4,~0\right) $ are linearly independent or dependent. | 2 |
1575 | Find the projection of the vector $ \vec{v_1} = \left(3,~0\right) $ on the vector $ \vec{v_2} = \left(-2,~0\right) $. | 2 |
1576 | Calculate the dot product of the vectors $ \vec{v_1} = \left(9,~4\right) $ and $ \vec{v_2} = \left(8,~-2\right) $ . | 2 |
1577 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~-2\right) $ . | 2 |
1578 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~-4,~2\right) $ and $ \vec{v_2} = \left(2,~2,~1\right) $ . | 2 |
1579 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~3,~-2\right) $ and $ \vec{v_2} = \left(1,~-2,~3\right) $ . | 2 |
1580 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~3,~-2\right) $ and $ \vec{v_2} = \left(-8,~5,~6\right) $ . | 2 |
1581 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 2069 }{ 100 },~\dfrac{ 857 }{ 100 }\right) $ and $ \vec{v_2} = \left(-\dfrac{ 997 }{ 100 },~\dfrac{ 1499 }{ 50 }\right) $ . | 2 |
1582 | Find the sum of the vectors $ \vec{v_1} = \left(-4,~5\right) $ and $ \vec{v_2} = \left(2,~-4\right) $ . | 2 |
1583 | Find the sum of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(-1,~-5\right) $ . | 2 |
1584 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~2,~3\right) $ and $ \vec{v_2} = \left(1,~1,~2\right) $ . | 2 |
1585 | Find the projection of the vector $ \vec{v_1} = \left(1,~-2,~1\right) $ on the vector $ \vec{v_2} = \left(4,~-4,~7\right) $. | 2 |
1586 | Find the projection of the vector $ \vec{v_1} = \left(2 \sqrt{ 3 },~2\right) $ on the vector $ \vec{v_2} = \left(6,~0\right) $. | 2 |
1587 | Find the angle between vectors $ \left(1,~3\right)$ and $\left(2,~1\right)$. | 2 |
1588 | Find the angle between vectors $ \left(3,~-4\right)$ and $\left(1,~0\right)$. | 2 |
1589 | Find the projection of the vector $ \vec{v_1} = \left(-8,~4\right) $ on the vector $ \vec{v_2} = \left(7,~-6\right) $. | 2 |
1590 | Find the magnitude of the vector $ \| \vec{v} \| = \left(37,~40\right) $ . | 2 |
1591 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~5\right) $ . | 2 |
1592 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~2\right) $ . | 2 |
1593 | Find the sum of the vectors $ \vec{v_1} = \left(5,~5\right) $ and $ \vec{v_2} = \left(2,~6\right) $ . | 2 |
1594 | Find the projection of the vector $ \vec{v_1} = \left(5,~5\right) $ on the vector $ \vec{v_2} = \left(2,~6\right) $. | 2 |
1595 | Find the difference of the vectors $ \vec{v_1} = \left(5,~4\right) $ and $ \vec{v_2} = \left(-9,~16\right) $ . | 2 |
1596 | Find the difference of the vectors $ \vec{v_1} = \left(7,~4\right) $ and $ \vec{v_2} = \left(-9,~28\right) $ . | 2 |
1597 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~3\right) $ and $ \vec{v_2} = \left(4,~-5\right) $ . | 2 |
1598 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~5,~5\right) $ and $ \vec{v_2} = \left(5,~0,~-5\right) $ . | 2 |
1599 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~4\right) $ . | 2 |
1600 | Find the sum of the vectors $ \vec{v_1} = \left(1,~5\right) $ and $ \vec{v_2} = \left(43,~0\right) $ . | 2 |