Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1451 | Calculate the cross product of the vectors $ \vec{v_1} = \left(0,~4,~4\right) $ and $ \vec{v_2} = \left(4 \sqrt{ 2 },~4,~4\right) $ . | 2 |
1452 | Find the angle between vectors $ \left(5,~3\right)$ and $\left(-2,~4\right)$. | 2 |
1453 | Find the angle between vectors $ \left(-7,~7\right)$ and $\left(6,~-4\right)$. | 2 |
1454 | Find the difference of the vectors $ \vec{v_1} = \left(-1,~3\right) $ and $ \vec{v_2} = \left(6,~-5\right) $ . | 2 |
1455 | Find the difference of the vectors $ \vec{v_1} = \left(-27,~21\right) $ and $ \vec{v_2} = \left(-12,~4\right) $ . | 2 |
1456 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 329 }{ 10 },~\dfrac{ 189 }{ 10 }\right) $ . | 2 |
1457 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~-3\right) $ and $ \vec{v_2} = \left(4,~1\right) $ . | 2 |
1458 | Find the angle between vectors $ \left(-2,~-1\right)$ and $\left(-3,~-4\right)$. | 2 |
1459 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~30\right) $ . | 2 |
1460 | Find the difference of the vectors $ \vec{v_1} = \left(2,~6\right) $ and $ \vec{v_2} = \left(0,~-5\right) $ . | 2 |
1461 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~1\right) $ . | 2 |
1462 | Find the magnitude of the vector $ \| \vec{v} \| = \left(18,~8\right) $ . | 2 |
1463 | Find the angle between vectors $ \left(18,~12\right)$ and $\left(6,~4\right)$. | 2 |
1464 | Find the sum of the vectors $ \vec{v_1} = \left(2,~0\right) $ and $ \vec{v_2} = \left(0,~2\right) $ . | 2 |
1465 | Find the difference of the vectors $ \vec{v_1} = \left(-3,~-12\right) $ and $ \vec{v_2} = \left(4,~9\right) $ . | 2 |
1466 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~2,~3\right) $ and $ \vec{v_2} = \left(4,~5,~6\right) $ . | 2 |
1467 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~-1\right) $ . | 2 |
1468 | Find the angle between vectors $ \left(1,~-1\right)$ and $\left(2,~1\right)$. | 2 |
1469 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~4\right) $ and $ \vec{v_2} = \left(5,~-4\right) $ . | 2 |
1470 | Find the magnitude of the vector $ \| \vec{v} \| = \left(150,~30\right) $ . | 2 |
1471 | Determine whether the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(10,~5\right) $ are linearly independent or dependent. | 2 |
1472 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~-12\right) $ . | 2 |
1473 | Find the magnitude of the vector $ \| \vec{v} \| = \left(15,~8\right) $ . | 2 |
1474 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-10,~20\right) $ . | 2 |
1475 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~2,~3\right) $ . | 2 |
1476 | Find the angle between vectors $ \left(-3,~-1\right)$ and $\left(0,~-3\right)$. | 2 |
1477 | Find the difference of the vectors $ \vec{v_1} = \left(4,~3\right) $ and $ \vec{v_2} = \left(-1,~5\right) $ . | 2 |
1478 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~1\right) $ . | 2 |
1479 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-8,~-21\right) $ . | 2 |
1480 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~-4\right) $ and $ \vec{v_2} = \left(2,~1\right) $ . | 2 |
1481 | Find the difference of the vectors $ \vec{v_1} = \left(-7,~-2\right) $ and $ \vec{v_2} = \left(-5,~8\right) $ . | 2 |
1482 | Find the sum of the vectors $ \vec{v_1} = \left(2,~1\right) $ and $ \vec{v_2} = \left(-1,~3\right) $ . | 2 |
1483 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~-3\right) $ . | 2 |
1484 | Find the angle between vectors $ \left(3,~4\right)$ and $\left(-7,~5\right)$. | 2 |
1485 | Find the angle between vectors $ \left(2,~-1\right)$ and $\left(6,~4\right)$. | 2 |
1486 | Find the angle between vectors $ \left(4,~-1\right)$ and $\left(-3,~5\right)$. | 2 |
1487 | Find the projection of the vector $ \vec{v_1} = \left(2,~1\right) $ on the vector $ \vec{v_2} = \left(1,~2\right) $. | 2 |
1488 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~2\right) $ . | 2 |
1489 | Determine whether the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(0,~1\right) $ are linearly independent or dependent. | 2 |
1490 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(2,~0\right) $ . | 2 |
1491 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~1\right) $ . | 2 |
1492 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~5\right) $ and $ \vec{v_2} = \left(4,~3\right) $ . | 2 |
1493 | Find the sum of the vectors $ \vec{v_1} = \left(-3,~-6\right) $ and $ \vec{v_2} = \left(4,~5\right) $ . | 2 |
1494 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
1495 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~-8\right) $ and $ \vec{v_2} = \left(0,~-9\right) $ . | 2 |
1496 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0,~0\right) $ . | 2 |
1497 | Calculate the cross product of the vectors $ \vec{v_1} = \left(3,~-4,~0\right) $ and $ \vec{v_2} = \left(0,~0,~\dfrac{ 1 }{ 10 }\right) $ . | 2 |
1498 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0,~0\right) $ . | 2 |
1499 | Find the sum of the vectors $ \vec{v_1} = \left(-12,~9\right) $ and $ \vec{v_2} = \left(-5,~-4\right) $ . | 2 |
1500 | Find the angle between vectors $ \left(0,~5\right)$ and $\left(-6,~1\right)$. | 2 |