Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1401 | Find the angle between vectors $ \left(2,~1\right)$ and $\left(1,~-3\right)$. | 2 |
1402 | Find the sum of the vectors $ \vec{v_1} = \left(6,~0\right) $ and $ \vec{v_2} = \left(0,~0\right) $ . | 2 |
1403 | Find the sum of the vectors $ \vec{v_1} = \left(6,~2\right) $ and $ \vec{v_2} = \left(2,~-7\right) $ . | 2 |
1404 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-1\right) $ and $ \vec{v_2} = \left(4,~1\right) $ . | 2 |
1405 | Find the sum of the vectors $ \vec{v_1} = \left(2,~4\right) $ and $ \vec{v_2} = \left(3,~-2\right) $ . | 2 |
1406 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~4\right) $ and $ \vec{v_2} = \left(-3,~3\right) $ . | 2 |
1407 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~4\right) $ and $ \vec{v_2} = \left(15,~-15\right) $ . | 2 |
1408 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~6\right) $ . | 2 |
1409 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
1410 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-6,~-3\right) $ . | 2 |
1411 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~2\right) $ and $ \vec{v_2} = \left(2,~2\right) $ . | 2 |
1412 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 1 }{ 5 },~\dfrac{ 4 }{ 5 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 7 }{ 10 },~\dfrac{ 3 }{ 10 }\right) $ . | 2 |
1413 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 1 }{ 5 },~\dfrac{ 4 }{ 5 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 7 }{ 10 },~\dfrac{ 3 }{ 10 }\right) $ . | 2 |
1414 | Find the angle between vectors $ \left(\dfrac{ 1 }{ 5 },~\dfrac{ 4 }{ 5 }\right)$ and $\left(\dfrac{ 7 }{ 10 },~\dfrac{ 3 }{ 10 }\right)$. | 2 |
1415 | Find the sum of the vectors $ \vec{v_1} = \left(5,~0\right) $ and $ \vec{v_2} = \left(5,~0\right) $ . | 2 |
1416 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~3\right) $ . | 2 |
1417 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~1\right) $ . | 2 |
1418 | Find the sum of the vectors $ \vec{v_1} = \left(5,~4\right) $ and $ \vec{v_2} = \left(2,~6\right) $ . | 2 |
1419 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~-2\right) $ . | 2 |
1420 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~-9\right) $ . | 2 |
1421 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-4,~1\right) $ and $ \vec{v_2} = \left(5,~-4\right) $ . | 2 |
1422 | Find the difference of the vectors $ \vec{v_1} = \left(0,~0\right) $ and $ \vec{v_2} = \left(3,~-5\right) $ . | 2 |
1423 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~-12\right) $ and $ \vec{v_2} = \left(\dfrac{ 3 }{ 5 },~-\dfrac{ 4 }{ 5 }\right) $ . | 2 |
1424 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~5\right) $ . | 2 |
1425 | Find the difference of the vectors $ \vec{v_1} = \left(-3,~-6\right) $ and $ \vec{v_2} = \left(-4,~-9\right) $ . | 2 |
1426 | Find the angle between vectors $ \left(2,~0\right)$ and $\left(1,~3\right)$. | 2 |
1427 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~7\right) $ and $ \vec{v_2} = \left(7,~1\right) $ . | 2 |
1428 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-8,~8\right) $ and $ \vec{v_2} = \left(1,~1\right) $ . | 2 |
1429 | Find the angle between vectors $ \left(-8,~8\right)$ and $\left(1,~1\right)$. | 2 |
1430 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-8,~8\right) $ and $ \vec{v_2} = \left(1,~-1\right) $ . | 2 |
1431 | Find the angle between vectors $ \left(-8,~8\right)$ and $\left(1,~-1\right)$. | 2 |
1432 | Calculate the dot product of the vectors $ \vec{v_1} = \left(9,~-5\right) $ and $ \vec{v_2} = \left(6,~5\right) $ . | 2 |
1433 | Find the sum of the vectors $ \vec{v_1} = \left(10,~1\right) $ and $ \vec{v_2} = \left(1,~10\right) $ . | 2 |
1434 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 7 }{ 10 },~\dfrac{ 3 }{ 10 }\right) $ . | 2 |
1435 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~3\right) $ . | 2 |
1436 | Find the sum of the vectors $ \vec{v_1} = \left(-3,~4\right) $ and $ \vec{v_2} = \left(4,~-3\right) $ . | 2 |
1437 | Find the sum of the vectors $ \vec{v_1} = \left(2,~9\right) $ and $ \vec{v_2} = \left(2,~0\right) $ . | 2 |
1438 | Find the angle between vectors $ \left(2,~0\right)$ and $\left(2,~8\right)$. | 2 |
1439 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-1\right) $ and $ \vec{v_2} = \left(7,~1\right) $ . | 2 |
1440 | Find the angle between vectors $ \left(2,~-1\right)$ and $\left(7,~1\right)$. | 2 |
1441 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~-4\right) $ . | 2 |
1442 | Find the difference of the vectors $ \vec{v_1} = \left(3,~-4\right) $ and $ \vec{v_2} = \left(-4,~-4\right) $ . | 2 |
1443 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~-4\right) $ and $ \vec{v_2} = \left(3,~-4\right) $ . | 2 |
1444 | Determine whether the vectors $ \vec{v_1} = \left(1,~2,~4\right) $, $ \vec{v_2} = \left(1,~3,~5\right) $ and $ \vec{v_3} = \left(2,~1,~5\right)$ are linearly independent or dependent. | 2 |
1445 | Find the sum of the vectors $ \vec{v_1} = \left(6,~8\right) $ and $ \vec{v_2} = \left(10,~0\right) $ . | 2 |
1446 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~-1\right) $ . | 2 |
1447 | Find the angle between vectors $ \left(1,~-12\right)$ and $\left(-\dfrac{ 1 }{ 4 },~3\right)$. | 2 |
1448 | Determine whether the vectors $ \vec{v_1} = \left(1,~-12\right) $ and $ \vec{v_2} = \left(-\dfrac{ 1 }{ 4 },~3\right) $ are linearly independent or dependent. | 2 |
1449 | Find the sum of the vectors $ \vec{v_1} = \left(0,~2\right) $ and $ \vec{v_2} = \left(1,~4\right) $ . | 2 |
1450 | Find the magnitude of the vector $ \| \vec{v} \| = \left(20,~0\right) $ . | 2 |