Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1351 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~6\right) $ and $ \vec{v_2} = \left(2,~-3\right) $ . | 2 |
1352 | Find the sum of the vectors $ \vec{v_1} = \left(-10,~12\right) $ and $ \vec{v_2} = \left(5,~-10\right) $ . | 2 |
1353 | Find the magnitude of the vector $ \| \vec{v} \| = \left(50,~70\right) $ . | 2 |
1354 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~3\right) $ . | 2 |
1355 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 1 }{ 4 },~\dfrac{ 3 }{ 4 }\right) $ . | 2 |
1356 | Find the angle between vectors $ \left(\dfrac{ 3 }{ 5 },~\dfrac{ 1 }{ 5 }\right)$ and $\left(\dfrac{ 2 }{ 5 },~\dfrac{ 4 }{ 5 }\right)$. | 2 |
1357 | Find the difference of the vectors $ \vec{v_1} = \left(-27,~21\right) $ and $ \vec{v_2} = \left(3,~-1\right) $ . | 2 |
1358 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 12 }{ 25 },~\dfrac{ 13 }{ 25 }\right) $ . | 2 |
1359 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 9 }{ 10 },~\dfrac{ 1 }{ 10 }\right) $ . | 2 |
1360 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~4\right) $ . | 2 |
1361 | Find the magnitude of the vector $ \| \vec{v} \| = \left(295.4,~52.1\right) $ . | 2 |
1362 | Determine whether the vectors $ \vec{v_1} = \left(3,~2\right) $ and $ \vec{v_2} = \left(4,~2\right) $ are linearly independent or dependent. | 2 |
1363 | Find the angle between vectors $ \left(-2 \sqrt{ 3 },~-2\right)$ and $\left(-4,~-4 \sqrt{ 3 }\right)$. | 2 |
1364 | Find the angle between vectors $ \left(3,~4\right)$ and $\left(-2,~5\right)$. | 2 |
1365 | Find the projection of the vector $ \vec{v_1} = \left(5,~-3\right) $ on the vector $ \vec{v_2} = \left(13,~8\right) $. | 2 |
1366 | Find the difference of the vectors $ \vec{v_1} = \left(6,~-3\right) $ and $ \vec{v_2} = \left(-2,~4\right) $ . | 2 |
1367 | Find the difference of the vectors $ \vec{v_1} = \left(-5,~-10\right) $ and $ \vec{v_2} = \left(12,~7\right) $ . | 2 |
1368 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~-9\right) $ and $ \vec{v_2} = \left(4,~12\right) $ . | 2 |
1369 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~6\right) $ . | 2 |
1370 | Find the angle between vectors $ \left(-1,~6\right)$ and $\left(2,~-3\right)$. | 2 |
1371 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-4,~1\right) $ and $ \vec{v_2} = \left(3,~-5\right) $ . | 2 |
1372 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~8\right) $ . | 2 |
1373 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~11\right) $ . | 2 |
1374 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~2\right) $ and $ \vec{v_2} = \left(-2,~0\right) $ . | 2 |
1375 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-2,~3\right) $ and $ \vec{v_2} = \left(-2,~5\right) $ . | 2 |
1376 | Find the angle between vectors $ \left(3,~8\right)$ and $\left(-2,~\dfrac{ 3 }{ 2 }\right)$. | 2 |
1377 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 46 }{ 5 },~\dfrac{ 71 }{ 10 }\right) $ . | 2 |
1378 | Find the projection of the vector $ \vec{v_1} = \left(-10,~-4\right) $ on the vector $ \vec{v_2} = \left(4,~-3\right) $. | 2 |
1379 | Find the difference of the vectors $ \vec{v_1} = \left(4,~-5\right) $ and $ \vec{v_2} = \left(-7,~4\right) $ . | 2 |
1380 | Find the projection of the vector $ \vec{v_1} = \left(0,~-2,~-1\right) $ on the vector $ \vec{v_2} = \left(-64,~-2,~30\right) $. | 2 |
1381 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~1\right) $ and $ \vec{v_2} = \left(-1,~2\right) $ . | 2 |
1382 | Find the angle between vectors $ \left(3,~-1\right)$ and $\left(-2,~5\right)$. | 2 |
1383 | Find the sum of the vectors $ \vec{v_1} = \left(2,~1\right) $ and $ \vec{v_2} = \left(1,~2\right) $ . | 2 |
1384 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~8\right) $ . | 2 |
1385 | Find the difference of the vectors $ \vec{v_1} = \left(1,~1\right) $ and $ \vec{v_2} = \left(2,~4\right) $ . | 2 |
1386 | Find the difference of the vectors $ \vec{v_1} = \left(5,~0\right) $ and $ \vec{v_2} = \left(4,~-3\right) $ . | 2 |
1387 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~-6\right) $ . | 2 |
1388 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~2\right) $ . | 2 |
1389 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~5\right) $ . | 2 |
1390 | Find the projection of the vector $ \vec{v_1} = \left(\dfrac{ 1 }{ 5 },~\dfrac{ 4 }{ 5 }\right) $ on the vector $ \vec{v_2} = \left(\dfrac{ 1 }{ 8 },~\dfrac{ 7 }{ 8 }\right) $. | 2 |
1391 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~-2\right) $ . | 2 |
1392 | Find the angle between vectors $ \left(-8,~9\right)$ and $\left(5,~-2\right)$. | 2 |
1393 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~-6\right) $ . | 2 |
1394 | Find the angle between vectors $ \left(-3,~-6\right)$ and $\left(-5,~2\right)$. | 2 |
1395 | Determine whether the vectors $ \vec{v_1} = \left(2,~4\right) $ and $ \vec{v_2} = \left(4,~-2\right) $ are linearly independent or dependent. | 2 |
1396 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~6\right) $ and $ \vec{v_2} = \left(3,~-1\right) $ . | 2 |
1397 | Find the angle between vectors $ \left(0,~1\right)$ and $\left(0,~5\right)$. | 2 |
1398 | Find the projection of the vector $ \vec{v_1} = \left(-3,~4\right) $ on the vector $ \vec{v_2} = \left(6,~8\right) $. | 2 |
1399 | Find the magnitude of the vector $ \| \vec{v} \| = \left(7,~8\right) $ . | 2 |
1400 | Find the angle between vectors $ \left(-1,~-3\right)$ and $\left(-2,~-3\right)$. | 2 |