Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1301 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-9,~-2\right) $ . | 2 |
1302 | Find the angle between vectors $ \left(-9,~-2\right)$ and $\left(-5,~-7\right)$. | 2 |
1303 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~4\right) $ and $ \vec{v_2} = \left(6,~4\right) $ . | 2 |
1304 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~3\right) $ and $ \vec{v_2} = \left(4,~-4\right) $ . | 2 |
1305 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~-2\right) $ and $ \vec{v_2} = \left(-3,~2\right) $ . | 2 |
1306 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-2\right) $ and $ \vec{v_2} = \left(-3,~4\right) $ . | 2 |
1307 | Find the angle between vectors $ \left(-15,~-8\right)$ and $\left(-1,~3\right)$. | 2 |
1308 | Find the angle between vectors $ \left(-4,~3\right)$ and $\left(2,~5\right)$. | 2 |
1309 | Find the angle between vectors $ \left(-8,~\sqrt{ 3 }\right)$ and $\left(10,~0\right)$. | 2 |
1310 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-8,~\sqrt{ 3 }\right) $ . | 2 |
1311 | Find the angle between vectors $ \left(3,~4\right)$ and $\left(-3,~7\right)$. | 2 |
1312 | Find the projection of the vector $ \vec{v_1} = \left(-5,~-1\right) $ on the vector $ \vec{v_2} = \left(1,~1\right) $. | 2 |
1313 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~3\right) $ . | 2 |
1314 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~-34.47,~-28.93\right) $ and $ \vec{v_2} = \left(0,~0.42,~0.91\right) $ . | 2 |
1315 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0.1667,~0.125\right) $ and $ \vec{v_2} = \left(0.8333,~0.875\right) $ . | 2 |
1316 | Find the difference of the vectors $ \vec{v_1} = \left(-7,~-49\right) $ and $ \vec{v_2} = \left(-48,~-72\right) $ . | 2 |
1317 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(-2,~5\right) $ . | 2 |
1318 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~8\right) $ and $ \vec{v_2} = \left(7,~5\right) $ . | 2 |
1319 | Find the angle between vectors $ \left(0,~2,~14\right)$ and $\left(0,~-2,~10\right)$. | 2 |
1320 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~-1,~0\right) $ and $ \vec{v_2} = \left(0,~1,~-1\right) $ . | 2 |
1321 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~3\right) $ . | 2 |
1322 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~-3\right) $ . | 2 |
1323 | Find the angle between vectors $ \left(-9,~5\right)$ and $\left(-1,~7\right)$. | 2 |
1324 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-13,~9\right) $ and $ \vec{v_2} = \left(14,~-6\right) $ . | 2 |
1325 | Find the angle between vectors $ \left(-5,~7\right)$ and $\left(-6,~4\right)$. | 2 |
1326 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-5,~7\right) $ and $ \vec{v_2} = \left(-6,~4\right) $ . | 2 |
1327 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~-1,~1\right) $ and $ \vec{v_2} = \left(-1,~1,~0\right) $ . | 2 |
1328 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~-1\right) $ . | 2 |
1329 | Find the difference of the vectors $ \vec{v_1} = \left(-5,~-3\right) $ and $ \vec{v_2} = \left(3,~-8\right) $ . | 2 |
1330 | Find the difference of the vectors $ \vec{v_1} = \left(-50,~90\right) $ and $ \vec{v_2} = \left(81,~-63\right) $ . | 2 |
1331 | Find the difference of the vectors $ \vec{v_1} = \left(-45,~81\right) $ and $ \vec{v_2} = \left(-36,~28\right) $ . | 2 |
1332 | Find the difference of the vectors $ \vec{v_1} = \left(-45,~81\right) $ and $ \vec{v_2} = \left(36,~-28\right) $ . | 2 |
1333 | Find the sum of the vectors $ \vec{v_1} = \left(-20,~36\right) $ and $ \vec{v_2} = \left(63,~-49\right) $ . | 2 |
1334 | Find the sum of the vectors $ \vec{v_1} = \left(-50,~90\right) $ and $ \vec{v_2} = \left(81,~-63\right) $ . | 2 |
1335 | Find the sum of the vectors $ \vec{v_1} = \left(50,~90\right) $ and $ \vec{v_2} = \left(81,~-63\right) $ . | 2 |
1336 | Find the sum of the vectors $ \vec{v_1} = \left(3,~0\right) $ and $ \vec{v_2} = \left(0,~6\right) $ . | 2 |
1337 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~3\right) $ . | 2 |
1338 | Find the projection of the vector $ \vec{v_1} = \left(0,~2\right) $ on the vector $ \vec{v_2} = \left(5,~-3\right) $. | 2 |
1339 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-8,~\sqrt{ 7 }\right) $ and $ \vec{v_2} = \left(64,~36\right) $ . | 2 |
1340 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-8,~\sqrt{ 7 }\right) $ . | 2 |
1341 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~1,~0\right) $ and $ \vec{v_2} = \left(-1,~1,~2\right) $ . | 2 |
1342 | Find the projection of the vector $ \vec{v_1} = \left(3,~-5\right) $ on the vector $ \vec{v_2} = \left(-4,~6\right) $. | 2 |
1343 | Find the angle between vectors $ \left(-3,~-4\right)$ and $\left(6,~-8\right)$. | 2 |
1344 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~-4\right) $ . | 2 |
1345 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~5\right) $ and $ \vec{v_2} = \left(-1,~3\right) $ . | 2 |
1346 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~5\right) $ . | 2 |
1347 | Find the sum of the vectors $ \vec{v_1} = \left(-7,~-3\right) $ and $ \vec{v_2} = \left(-5,~7\right) $ . | 2 |
1348 | Find the angle between vectors $ \left(2,~1\right)$ and $\left(1,~-2\right)$. | 2 |
1349 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~6\right) $ . | 2 |
1350 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-1\right) $ and $ \vec{v_2} = \left(-3,~6\right) $ . | 2 |