Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1251 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~-9\right) $ and $ \vec{v_2} = \left(-2,~-4\right) $ . | 2 |
1252 | Find the difference of the vectors $ \vec{v_1} = \left(0,~1\right) $ and $ \vec{v_2} = \left(-2,~0\right) $ . | 2 |
1253 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~2 \sqrt{ 3 }\right) $ . | 2 |
1254 | Calculate the cross product of the vectors $ \vec{v_1} = \left(0,~-\dfrac{ 3 }{ 100 },~\dfrac{ 99 }{ 100 }\right) $ and $ \vec{v_2} = \left(0,~-1,~0\right) $ . | 2 |
1255 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-10,~3\right) $ . | 2 |
1256 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~1\right) $ . | 2 |
1257 | Find the angle between vectors $ \left(8,~-6\right)$ and $\left(-8,~-5\right)$. | 2 |
1258 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-7,~5\right) $ and $ \vec{v_2} = \left(6,~5\right) $ . | 2 |
1259 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-7,~5\right) $ and $ \vec{v_2} = \left(6,~6\right) $ . | 2 |
1260 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-7,~5\right) $ and $ \vec{v_2} = \left(6,~7\right) $ . | 2 |
1261 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-7,~5\right) $ and $ \vec{v_2} = \left(6,~9\right) $ . | 2 |
1262 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~4\right) $ . | 2 |
1263 | Find the sum of the vectors $ \vec{v_1} = \left(2,~1\right) $ and $ \vec{v_2} = \left(-24,~-6\right) $ . | 2 |
1264 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~2\right) $ . | 2 |
1265 | Determine whether the vectors $ \vec{v_1} = \left(3,~12,~-21\right) $, $ \vec{v_2} = \left(2,~-1,~4\right) $ and $ \vec{v_3} = \left(0,~-10,~20\right)$ are linearly independent or dependent. | 2 |
1266 | Determine whether the vectors $ \vec{v_1} = \left(-5,~10\right) $ and $ \vec{v_2} = \left(-10,~20\right) $ are linearly independent or dependent. | 2 |
1267 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~1\right) $ . | 2 |
1268 | Find the difference of the vectors $ \vec{v_1} = \left(4,~2\right) $ and $ \vec{v_2} = \left(8,~2\right) $ . | 2 |
1269 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~-2\right) $ and $ \vec{v_2} = \left(-4,~3\right) $ . | 2 |
1270 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-6,~4\right) $ . | 2 |
1271 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~6\right) $ and $ \vec{v_2} = \left(7,~35\right) $ . | 2 |
1272 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~-1\right) $ . | 2 |
1273 | Find the sum of the vectors $ \vec{v_1} = \left(4,~2\right) $ and $ \vec{v_2} = \left(2,~8\right) $ . | 2 |
1274 | Calculate the dot product of the vectors $ \vec{v_1} = \left(30,~-6\right) $ and $ \vec{v_2} = \left(0,~0\right) $ . | 2 |
1275 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~-6\right) $ . | 2 |
1276 | Find the magnitude of the vector $ \| \vec{v} \| = \left(25,~0\right) $ . | 2 |
1277 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-4,~3,~2\right) $ and $ \vec{v_2} = \left(1,~3,~1\right) $ . | 2 |
1278 | Find the angle between vectors $ \left(\dfrac{ 3 }{ 5 },~\dfrac{ 4 }{ 5 }\right)$ and $\left(6,~8\right)$. | 2 |
1279 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~6\right) $ and $ \vec{v_2} = \left(12,~-18\right) $ . | 2 |
1280 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~-3\right) $ and $ \vec{v_2} = \left(-4,~2\right) $ . | 2 |
1281 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~-3\right) $ and $ \vec{v_2} = \left(-5,~5\right) $ . | 2 |
1282 | Find the angle between vectors $ \left(-4,~3\right)$ and $\left(3,~8\right)$. | 2 |
1283 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-18,~14\right) $ . | 2 |
1284 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~-1\right) $ . | 2 |
1285 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~-1\right) $ and $ \vec{v_2} = \left(6,~2\right) $ . | 2 |
1286 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-2,~4\right) $ and $ \vec{v_2} = \left(6,~2\right) $ . | 2 |
1287 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~20\right) $ . | 2 |
1288 | Find the projection of the vector $ \vec{v_1} = \left(9,~-7\right) $ on the vector $ \vec{v_2} = \left(-10,~7\right) $. | 2 |
1289 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 2 }{ 5 },~\dfrac{ 3 }{ 5 }\right) $ . | 2 |
1290 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 1 }{ 4 },~\dfrac{ 1 }{ 8 }\right) $ . | 2 |
1291 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~-4,~2\right) $ and $ \vec{v_2} = \left(2,~2,~1\right) $ . | 2 |
1292 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~3,~-2\right) $ and $ \vec{v_2} = \left(1,~-2,~3\right) $ . | 2 |
1293 | Find the angle between vectors $ \left(3,~9\right)$ and $\left(-9,~5\right)$. | 2 |
1294 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~-12\right) $ . | 2 |
1295 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~2\right) $ . | 2 |
1296 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~0\right) $ . | 2 |
1297 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~7\right) $ and $ \vec{v_2} = \left(7,~8\right) $ . | 2 |
1298 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~4\right) $ . | 2 |
1299 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~2\right) $ . | 2 |
1300 | Calculate the dot product of the vectors $ \vec{v_1} = \left(7,~-2\right) $ and $ \vec{v_2} = \left(7,~-2\right) $ . | 2 |