Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1201 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~-2\right) $ and $ \vec{v_2} = \left(3,~4\right) $ . | 2 |
1202 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~0\right) $ and $ \vec{v_2} = \left(4,~5\right) $ . | 2 |
1203 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-2,~1\right) $ and $ \vec{v_2} = \left(-5,~5\right) $ . | 2 |
1204 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-5,~5\right) $ and $ \vec{v_2} = \left(-5,~5\right) $ . | 2 |
1205 | Calculate the cross product of the vectors $ \vec{v_1} = \left(6,~3,~-4\right) $ and $ \vec{v_2} = \left(-2,~3,~-7\right) $ . | 2 |
1206 | Calculate the cross product of the vectors $ \vec{v_1} = \left(2,~-1,~-2\right) $ and $ \vec{v_2} = \left(1,~2,~-2\right) $ . | 2 |
1207 | Find the magnitude of the vector $ \| \vec{v} \| = \left(9,~-7\right) $ . | 2 |
1208 | Calculate the dot product of the vectors $ \vec{v_1} = \left(9,~-7\right) $ and $ \vec{v_2} = \left(7,~6\right) $ . | 2 |
1209 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~4\right) $ and $ \vec{v_2} = \left(2,~3\right) $ . | 2 |
1210 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~4\right) $ and $ \vec{v_2} = \left(5,~-7\right) $ . | 2 |
1211 | Find the sum of the vectors $ \vec{v_1} = \left(3,~5\right) $ and $ \vec{v_2} = \left(6,~0\right) $ . | 2 |
1212 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~0\right) $ . | 2 |
1213 | Find the angle between vectors $ \left(-2,~-3\right)$ and $\left(6,~-1\right)$. | 2 |
1214 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~0\right) $ and $ \vec{v_2} = \left(2,~4\right) $ . | 2 |
1215 | Find the difference of the vectors $ \vec{v_1} = \left(8,~-8\right) $ and $ \vec{v_2} = \left(-5,~8\right) $ . | 2 |
1216 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~17\right) $ . | 2 |
1217 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~-15\right) $ . | 2 |
1218 | Calculate the cross product of the vectors $ \vec{v_1} = \left(\dfrac{ 3 }{ 50 },~\dfrac{ 3 }{ 40 },~0\right) $ and $ \vec{v_2} = \left(0,~\dfrac{ 433 }{ 2 },~125\right) $ . | 2 |
1219 | Find the angle between vectors $ \left(0,~10\right)$ and $\left(0,~15\right)$. | 2 |
1220 | Find the sum of the vectors $ \vec{v_1} = \left(32,~40\right) $ and $ \vec{v_2} = \left(42,~36\right) $ . | 2 |
1221 | Find the magnitude of the vector $ \| \vec{v} \| = \left(74,~76\right) $ . | 2 |
1222 | Find the projection of the vector $ \vec{v_1} = \left(-3,~0\right) $ on the vector $ \vec{v_2} = \left(5,~0\right) $. | 2 |
1223 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~3\right) $ and $ \vec{v_2} = \left(-8,~-20\right) $ . | 2 |
1224 | Find the sum of the vectors $ \vec{v_1} = \left(0,~-30\right) $ and $ \vec{v_2} = \left(-9,~-27\right) $ . | 2 |
1225 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~2\right) $ and $ \vec{v_2} = \left(-\dfrac{ 9 }{ 2 },~0\right) $ . | 2 |
1226 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~2\right) $ and $ \vec{v_2} = \left(\dfrac{ 3 }{ 2 },~0\right) $ . | 2 |
1227 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-2,~3\right) $ and $ \vec{v_2} = \left(\dfrac{ 3 }{ 2 },~0\right) $ . | 2 |
1228 | Calculate the dot product of the vectors $ \vec{v_1} = \left(22,~15\right) $ and $ \vec{v_2} = \left(-2,~4\right) $ . | 2 |
1229 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~10\right) $ and $ \vec{v_2} = \left(-\dfrac{ 3 }{ 2 },~\dfrac{ 3 }{ 5 }\right) $ . | 2 |
1230 | Find the angle between vectors $ \left(-7,~8\right)$ and $\left(1,~0\right)$. | 2 |
1231 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~8\right) $ . | 2 |
1232 | Find the angle between vectors $ \left(-7,~8\right)$ and $\left(5,~3\right)$. | 2 |
1233 | Find the difference of the vectors $ \vec{v_1} = \left(16,~-8\right) $ and $ \vec{v_2} = \left(18,~3\right) $ . | 2 |
1234 | Find the angle between vectors $ \left(7,~5\right)$ and $\left(-4,~-2\right)$. | 2 |
1235 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 333 }{ 100 },~0\right) $ and $ \vec{v_2} = \left(\dfrac{ 333 }{ 100 },~120\right) $ . | 2 |
1236 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 333 }{ 100 },~0\right) $ . | 2 |
1237 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 333 }{ 100 },~0\right) $ and $ \vec{v_2} = \left(\dfrac{ 333 }{ 100 },~120\right) $ . | 2 |
1238 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~2,~-4\right) $ . | 2 |
1239 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0,~-\dfrac{ 707107 }{ 25000 }\right) $ . | 2 |
1240 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~-3\right) $ . | 2 |
1241 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~-1\right) $ and $ \vec{v_2} = \left(2,~5\right) $ . | 2 |
1242 | Find the angle between vectors $ \left(1,~2\right)$ and $\left(-6,~3\right)$. | 2 |
1243 | Find the angle between vectors $ \left(2,~0\right)$ and $\left(1,~1\right)$. | 2 |
1244 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~2\right) $ and $ \vec{v_2} = \left(1,~-1\right) $ . | 2 |
1245 | Find the magnitude of the vector $ \| \vec{v} \| = \left(67,~85\right) $ . | 2 |
1246 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~12\right) $ . | 2 |
1247 | Find the sum of the vectors $ \vec{v_1} = \left(-4,~12\right) $ and $ \vec{v_2} = \left(6,~8\right) $ . | 2 |
1248 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 24 }{ 5 },~-4\right) $ . | 2 |
1249 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~7\right) $ . | 2 |
1250 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-4,~1\right) $ and $ \vec{v_2} = \left(9,~6\right) $ . | 2 |