Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1151 | Find the magnitude of the vector $ \| \vec{v} \| = \left(45,~0\right) $ . | 2 |
1152 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~-3,~2\right) $ and $ \vec{v_2} = \left(-3,~9,~-6\right) $ . | 2 |
1153 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 2 }{ 5 },~-\dfrac{ 4 }{ 5 }\right) $ . | 2 |
1154 | Find the sum of the vectors $ \vec{v_1} = \left(6,~3,~4 \sqrt{ 5 }\right) $ and $ \vec{v_2} = \left(6,~0,~10 \sqrt{ 5 }\right) $ . | 2 |
1155 | Find the magnitude of the vector $ \| \vec{v} \| = \left(12,~3,~14 \sqrt{ 5 }\right) $ . | 2 |
1156 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~0,~5\right) $ and $ \vec{v_2} = \left(5,~5 \sqrt{ 2 },~5\right) $ . | 2 |
1157 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~0,~5\right) $ . | 2 |
1158 | Find the difference of the vectors $ \vec{v_1} = \left(1,~0\right) $ and $ \vec{v_2} = \left(0,~1\right) $ . | 2 |
1159 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~1\right) $ . | 2 |
1160 | Find the angle between vectors $ \left(2,~1\right)$ and $\left(4.1623,~2.1623\right)$. | 2 |
1161 | Find the sum of the vectors $ \vec{v_1} = \left(0,~1\right) $ and $ \vec{v_2} = \left(9,~-1\right) $ . | 2 |
1162 | Find the difference of the vectors $ \vec{v_1} = \left(0,~1\right) $ and $ \vec{v_2} = \left(0,~-1\right) $ . | 2 |
1163 | Find the difference of the vectors $ \vec{v_1} = \left(5,~2\right) $ and $ \vec{v_2} = \left(2,~-4\right) $ . | 2 |
1164 | Find the sum of the vectors $ \vec{v_1} = \left(0,~75\right) $ and $ \vec{v_2} = \left(250,~75\right) $ . | 2 |
1165 | Find the difference of the vectors $ \vec{v_1} = \left(30,~159\right) $ and $ \vec{v_2} = \left(\dfrac{ 27 }{ 2 },~\dfrac{ 85 }{ 2 }\right) $ . | 2 |
1166 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~2\right) $ and $ \vec{v_2} = \left(4,~5\right) $ . | 2 |
1167 | Find the difference of the vectors $ \vec{v_1} = \left(3,~2\right) $ and $ \vec{v_2} = \left(4,~5\right) $ . | 2 |
1168 | Find the difference of the vectors $ \vec{v_1} = \left(-36,~4\right) $ and $ \vec{v_2} = \left(21,~13\right) $ . | 2 |
1169 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~1\right) $ and $ \vec{v_2} = \left(2,~2\right) $ . | 2 |
1170 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~2,~-4\right) $ and $ \vec{v_2} = \left(1,~0,~0\right) $ . | 2 |
1171 | Calculate the dot product of the vectors $ \vec{v_1} = \left(12,~5\right) $ and $ \vec{v_2} = \left(2,~8\right) $ . | 2 |
1172 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~2\right) $ and $ \vec{v_2} = \left(-3,~3\right) $ . | 2 |
1173 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~2,~-4\right) $ and $ \vec{v_2} = \left(-10,~-10,~20\right) $ . | 2 |
1174 | Find the sum of the vectors $ \vec{v_1} = \left(1,~-2\right) $ and $ \vec{v_2} = \left(-5,~0\right) $ . | 2 |
1175 | Find the angle between vectors $ \left(0,~4\right)$ and $\left(0,~15\right)$. | 2 |
1176 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 5017 }{ 10 },~\dfrac{ 34 }{ 5 }\right) $ . | 2 |
1177 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-6,~18\right) $ and $ \vec{v_2} = \left(9,~3\right) $ . | 2 |
1178 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~-1\right) $ . | 2 |
1179 | Find the sum of the vectors $ \vec{v_1} = \left(-5,~-1\right) $ and $ \vec{v_2} = \left(3,~2\right) $ . | 2 |
1180 | Find the angle between vectors $ \left(6,~8\right)$ and $\left(2,~0\right)$. | 2 |
1181 | Find the magnitude of the vector $ \| \vec{v} \| = \left(15,~7\right) $ . | 2 |
1182 | Find the sum of the vectors $ \vec{v_1} = \left(7,~2\right) $ and $ \vec{v_2} = \left(1,~4\right) $ . | 2 |
1183 | Find the sum of the vectors $ \vec{v_1} = \left(12,~3\right) $ and $ \vec{v_2} = \left(-5,~3\right) $ . | 2 |
1184 | Find the difference of the vectors $ \vec{v_1} = \left(0,~9\right) $ and $ \vec{v_2} = \left(10,~4\right) $ . | 2 |
1185 | Find the difference of the vectors $ \vec{v_1} = \left(4,~-3\right) $ and $ \vec{v_2} = \left(-5,~0\right) $ . | 2 |
1186 | Find the difference of the vectors $ \vec{v_1} = \left(-16,~12\right) $ and $ \vec{v_2} = \left(-10,~0\right) $ . | 2 |
1187 | Find the angle between vectors $ \left(7,~8\right)$ and $\left(5,~-3\right)$. | 2 |
1188 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~2\right) $ and $ \vec{v_2} = \left(16,~12\right) $ . | 2 |
1189 | Find the difference of the vectors $ \vec{v_1} = \left(18,~-12\right) $ and $ \vec{v_2} = \left(-10,~0\right) $ . | 2 |
1190 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-4\right) $ and $ \vec{v_2} = \left(3,~-1\right) $ . | 2 |
1191 | Find the sum of the vectors $ \vec{v_1} = \left(-4,~-2\right) $ and $ \vec{v_2} = \left(-1,~-4\right) $ . | 2 |
1192 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~3\right) $ . | 2 |
1193 | Find the angle between vectors $ \left(-6,~-3\right)$ and $\left(-8,~4\right)$. | 2 |
1194 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~-5,~-3\right) $ and $ \vec{v_2} = \left(0,~-5,~-5\right) $ . | 2 |
1195 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 1 }{ 2 },~0\right) $ and $ \vec{v_2} = \left(0,~-\dfrac{ 1 }{ 2 }\right) $ . | 2 |
1196 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 1 }{ 2 },~\dfrac{\sqrt{ 3 }}{ 2 }\right) $ and $ \vec{v_2} = \left(- \dfrac{\sqrt{ 3 }}{ 2 },~-\dfrac{ 1 }{ 2 }\right) $ . | 2 |
1197 | Find the difference of the vectors $ \vec{v_1} = \left(\dfrac{ 1 }{ 2 },~\dfrac{\sqrt{ 3 }}{ 2 }\right) $ and $ \vec{v_2} = \left(- \dfrac{\sqrt{ 3 }}{ 2 },~-\dfrac{ 1 }{ 2 }\right) $ . | 2 |
1198 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~4\right) $ . | 2 |
1199 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-23 \sqrt{ 2 },~-23 \sqrt{ 2 }\right) $ . | 2 |
1200 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~-1\right) $ . | 2 |