Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1101 | Find the difference of the vectors $ \vec{v_1} = \left(240,~20\right) $ and $ \vec{v_2} = \left(-150,~309.23\right) $ . | 2 |
1102 | Find the difference of the vectors $ \vec{v_1} = \left(230,~30\right) $ and $ \vec{v_2} = \left(-150,~309.23\right) $ . | 2 |
1103 | Find the difference of the vectors $ \vec{v_1} = \left(250,~110\right) $ and $ \vec{v_2} = \left(-200,~0\right) $ . | 2 |
1104 | Find the difference of the vectors $ \vec{v_1} = \left(190,~60\right) $ and $ \vec{v_2} = \left(-120,~296\right) $ . | 2 |
1105 | Find the difference of the vectors $ \vec{v_1} = \left(250,~40\right) $ and $ \vec{v_2} = \left(-110,~282\right) $ . | 2 |
1106 | Find the difference of the vectors $ \vec{v_1} = \left(240,~90\right) $ and $ \vec{v_2} = \left(-140,~354.29\right) $ . | 2 |
1107 | Find the difference of the vectors $ \vec{v_1} = \left(225,~10\right) $ and $ \vec{v_2} = \left(-150,~285\right) $ . | 2 |
1108 | Find the difference of the vectors $ \vec{v_1} = \left(240,~80\right) $ and $ \vec{v_2} = \left(-110,~287.53\right) $ . | 2 |
1109 | Find the difference of the vectors $ \vec{v_1} = \left(220,~10\right) $ and $ \vec{v_2} = \left(-190,~295\right) $ . | 2 |
1110 | Find the difference of the vectors $ \vec{v_1} = \left(230,~20\right) $ and $ \vec{v_2} = \left(-190,~285.273\right) $ . | 2 |
1111 | Find the difference of the vectors $ \vec{v_1} = \left(220,~30\right) $ and $ \vec{v_2} = \left(-190,~285.27\right) $ . | 2 |
1112 | Find the difference of the vectors $ \vec{v_1} = \left(-160,~80\right) $ and $ \vec{v_2} = \left(-140,~280\right) $ . | 2 |
1113 | Find the difference of the vectors $ \vec{v_1} = \left(220,~280\right) $ and $ \vec{v_2} = \left(-150,~283.1\right) $ . | 2 |
1114 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~-1,~-5\right) $ and $ \vec{v_2} = \left(6,~-\dfrac{ 3 }{ 2 },~-\dfrac{ 15 }{ 2 }\right) $ . | 2 |
1115 | Find the difference of the vectors $ \vec{v_1} = \left(17537,~-\dfrac{ 35597 }{ 1000 }\right) $ and $ \vec{v_2} = \left(17432,~-\dfrac{ 38871 }{ 1000 }\right) $ . | 2 |
1116 | Find the sum of the vectors $ \vec{v_1} = \left(0,~3\right) $ and $ \vec{v_2} = \left(1,~-3\right) $ . | 2 |
1117 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~0\right) $ and $ \vec{v_2} = \left(8,~4\right) $ . | 2 |
1118 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~-1\right) $ and $ \vec{v_2} = \left(1,~4\right) $ . | 2 |
1119 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~2\right) $ . | 2 |
1120 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~13\right) $ . | 2 |
1121 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~-6\right) $ . | 2 |
1122 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-6\right) $ and $ \vec{v_2} = \left(-4,~7\right) $ . | 2 |
1123 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-6,~4\right) $ and $ \vec{v_2} = \left(-3,~6\right) $ . | 2 |
1124 | Find the angle between vectors $ \left(-6,~4\right)$ and $\left(-3,~6\right)$. | 2 |
1125 | Find the projection of the vector $ \vec{v_1} = \left(-6,~4\right) $ on the vector $ \vec{v_2} = \left(-3,~6\right) $. | 2 |
1126 | Determine whether the vectors $ \vec{v_1} = \left(6,~-2\right) $ and $ \vec{v_2} = \left(-1,~0\right) $ are linearly independent or dependent. | 2 |
1127 | Find the angle between vectors $ \left(6,~-2\right)$ and $\left(-1,~0\right)$. | 2 |
1128 | Find the projection of the vector $ \vec{v_1} = \left(6,~-2\right) $ on the vector $ \vec{v_2} = \left(-1,~0\right) $. | 2 |
1129 | Find the difference of the vectors $ \vec{v_1} = \left(6,~-2\right) $ and $ \vec{v_2} = \left(-1,~0\right) $ . | 2 |
1130 | Find the difference of the vectors $ \vec{v_1} = \left(12,~-4\right) $ and $ \vec{v_2} = \left(-5,~0\right) $ . | 2 |
1131 | Find the magnitude of the vector $ \| \vec{v} \| = \left(34,~72\right) $ . | 2 |
1132 | Find the magnitude of the vector $ \| \vec{v} \| = \left(15,~83\right) $ . | 2 |
1133 | Find the magnitude of the vector $ \| \vec{v} \| = \left(50,~57\right) $ . | 2 |
1134 | Calculate the dot product of the vectors $ \vec{v_1} = \left(50,~57\right) $ and $ \vec{v_2} = \left(29,~1\right) $ . | 2 |
1135 | Find the sum of the vectors $ \vec{v_1} = \left(50,~57\right) $ and $ \vec{v_2} = \left(29,~1\right) $ . | 2 |
1136 | Determine whether the vectors $ \vec{v_1} = \left(50,~57\right) $ and $ \vec{v_2} = \left(29,~1\right) $ are linearly independent or dependent. | 2 |
1137 | Find the projection of the vector $ \vec{v_1} = \left(50,~57\right) $ on the vector $ \vec{v_2} = \left(29,~1\right) $. | 2 |
1138 | Find the angle between vectors $ \left(57,~87\right)$ and $\left(67,~1\right)$. | 2 |
1139 | Find the angle between vectors $ \left(87,~30\right)$ and $\left(41,~1\right)$. | 2 |
1140 | Find the angle between vectors $ \left(47,~40\right)$ and $\left(50,~1\right)$. | 2 |
1141 | Find the angle between vectors $ \left(40,~24\right)$ and $\left(57,~1\right)$. | 2 |
1142 | Find the angle between vectors $ \left(24,~35\right)$ and $\left(87,~1\right)$. | 2 |
1143 | Find the angle between vectors $ \left(35,~84\right)$ and $\left(30,~1\right)$. | 2 |
1144 | Calculate the dot product of the vectors $ \vec{v_1} = \left(15,~-8\right) $ and $ \vec{v_2} = \left(-3,~-4\right) $ . | 2 |
1145 | Find the angle between vectors $ \left(15,~-8\right)$ and $\left(-3,~-4\right)$. | 2 |
1146 | Find the angle between vectors $ \left(24,~40\right)$ and $\left(40,~1\right)$. | 2 |
1147 | Find the angle between vectors $ \left(40,~25\right)$ and $\left(24,~1\right)$. | 2 |
1148 | Find the angle between vectors $ \left(80,~61\right)$ and $\left(25,~1\right)$. | 2 |
1149 | Find the angle between vectors $ \left(61,~39\right)$ and $\left(24,~1\right)$. | 2 |
1150 | Find the angle between vectors $ \left(56,~30\right)$ and $\left(25,~1\right)$. | 2 |