Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1051 | Determine whether the vectors $ \vec{v_1} = \left(-5,~-4\right) $ and $ \vec{v_2} = \left(-2,~\dfrac{ 1 }{ 4 }\right) $ are linearly independent or dependent. | 2 |
1052 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-9,~2\right) $ . | 2 |
1053 | Find the sum of the vectors $ \vec{v_1} = \left(8,~-4\right) $ and $ \vec{v_2} = \left(3,~1\right) $ . | 2 |
1054 | Find the angle between vectors $ \left(-\dfrac{ 131 }{ 200 },~-\dfrac{ 29 }{ 200 }\right)$ and $\left(\dfrac{ 77 }{ 1000 },~-\dfrac{ 409 }{ 1000 }\right)$. | 2 |
1055 | Find the angle between vectors $ \left(\dfrac{ 717 }{ 500 },~\dfrac{ 309 }{ 1000 }\right)$ and $\left(-\dfrac{ 19 }{ 125 },~\dfrac{ 887 }{ 1000 }\right)$. | 2 |
1056 | Find the sum of the vectors $ \vec{v_1} = \left(-3,~4\right) $ and $ \vec{v_2} = \left(4,~5\right) $ . | 2 |
1057 | Determine whether the vectors $ \vec{v_1} = \left(1,~-3\right) $ and $ \vec{v_2} = \left(-23,~9\right) $ are linearly independent or dependent. | 2 |
1058 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~4\right) $ . | 2 |
1059 | Determine whether the vectors $ \vec{v_1} = \left(1,~2,~5\right) $, $ \vec{v_2} = \left(2,~5,~1\right) $ and $ \vec{v_3} = \left(1,~5,~2\right)$ are linearly independent or dependent. | 2 |
1060 | Find the difference of the vectors $ \vec{v_1} = \left(\dfrac{ 63961 }{ 125 },~\dfrac{ 35737 }{ 2000 }\right) $ and $ \vec{v_2} = \left(-\dfrac{ 304999 }{ 1000 },~-\dfrac{ 44319 }{ 200 }\right) $ . | 2 |
1061 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-4\right) $ and $ \vec{v_2} = \left(-4,~6\right) $ . | 2 |
1062 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~6\right) $ and $ \vec{v_2} = \left(3,~2\right) $ . | 2 |
1063 | Find the difference of the vectors $ \vec{v_1} = \left(5,~6\right) $ and $ \vec{v_2} = \left(-4,~-1\right) $ . | 2 |
1064 | Find the sum of the vectors $ \vec{v_1} = \left(5,~1\right) $ and $ \vec{v_2} = \left(-4,~-2\right) $ . | 2 |
1065 | Find the sum of the vectors $ \vec{v_1} = \left(6,~-2\right) $ and $ \vec{v_2} = \left(3,~2\right) $ . | 2 |
1066 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~2\right) $ . | 2 |
1067 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~3\right) $ . | 2 |
1068 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~-3\right) $ and $ \vec{v_2} = \left(-2,~-3\right) $ . | 2 |
1069 | Determine whether the vectors $ \vec{v_1} = \left(0,~2,~4\right) $, $ \vec{v_2} = \left(4,~0,~7\right) $ and $ \vec{v_3} = \left(4,~-2,~3\right)$ are linearly independent or dependent. | 2 |
1070 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~-8\right) $ . | 2 |
1071 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~7\right) $ . | 2 |
1072 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(4,~3\right) $ . | 2 |
1073 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~-2\right) $ . | 2 |
1074 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~-3\right) $ . | 2 |
1075 | Find the sum of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(-2,~-3\right) $ . | 2 |
1076 | Find the sum of the vectors $ \vec{v_1} = \left(6,~-4\right) $ and $ \vec{v_2} = \left(-7,~7\right) $ . | 2 |
1077 | Find the difference of the vectors $ \vec{v_1} = \left(-1,~5\right) $ and $ \vec{v_2} = \left(4,~-3\right) $ . | 2 |
1078 | Find the projection of the vector $ \vec{v_1} = \left(6,~3\right) $ on the vector $ \vec{v_2} = \left(5,~9\right) $. | 2 |
1079 | Find the projection of the vector $ \vec{v_1} = \left(-8,~-8\right) $ on the vector $ \vec{v_2} = \left(-1,~-9\right) $. | 2 |
1080 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~1\right) $ and $ \vec{v_2} = \left(-1,~1\right) $ . | 2 |
1081 | Find the angle between vectors $ \left(16,~12\right)$ and $\left(33,~23\right)$. | 2 |
1082 | Find the magnitude of the vector $ \| \vec{v} \| = \left(24,~10\right) $ . | 2 |
1083 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~8\right) $ . | 2 |
1084 | Find the sum of the vectors $ \vec{v_1} = \left(-190,~321\right) $ and $ \vec{v_2} = \left(230,~80\right) $ . | 2 |
1085 | Find the difference of the vectors $ \vec{v_1} = \left(230,~80\right) $ and $ \vec{v_2} = \left(-190,~321\right) $ . | 2 |
1086 | Find the magnitude of the vector $ \| \vec{v} \| = \left(420,~-241\right) $ . | 2 |
1087 | Find the difference of the vectors $ \vec{v_1} = \left(240,~20\right) $ and $ \vec{v_2} = \left(-140,~305\right) $ . | 2 |
1088 | Find the magnitude of the vector $ \| \vec{v} \| = \left(380,~-285\right) $ . | 2 |
1089 | Find the difference of the vectors $ \vec{v_1} = \left(220,~20\right) $ and $ \vec{v_2} = \left(-150,~305.34\right) $ . | 2 |
1090 | Find the magnitude of the vector $ \| \vec{v} \| = \left(370,~-285.34\right) $ . | 2 |
1091 | Find the difference of the vectors $ \vec{v_1} = \left(210,~30\right) $ and $ \vec{v_2} = \left(-150,~309.23\right) $ . | 2 |
1092 | Find the magnitude of the vector $ \| \vec{v} \| = \left(360,~-279.23\right) $ . | 2 |
1093 | Find the difference of the vectors $ \vec{v_1} = \left(240,~40\right) $ and $ \vec{v_2} = \left(-190,~321.43\right) $ . | 2 |
1094 | Find the difference of the vectors $ \vec{v_1} = \left(240,~10\right) $ and $ \vec{v_2} = \left(-190,~321.43\right) $ . | 2 |
1095 | Find the difference of the vectors $ \vec{v_1} = \left(210,~30\right) $ and $ \vec{v_2} = \left(-190,~321.43\right) $ . | 2 |
1096 | Find the difference of the vectors $ \vec{v_1} = \left(220,~40\right) $ and $ \vec{v_2} = \left(-150,~309.23\right) $ . | 2 |
1097 | Find the difference of the vectors $ \vec{v_1} = \left(230,~6.67\right) $ and $ \vec{v_2} = \left(-150,~309.23\right) $ . | 2 |
1098 | Find the difference of the vectors $ \vec{v_1} = \left(220,~20\right) $ and $ \vec{v_2} = \left(-180,~318.7\right) $ . | 2 |
1099 | Find the difference of the vectors $ \vec{v_1} = \left(210,~40\right) $ and $ \vec{v_2} = \left(-190,~-231.43\right) $ . | 2 |
1100 | Find the difference of the vectors $ \vec{v_1} = \left(210,~40\right) $ and $ \vec{v_2} = \left(-190,~321.43\right) $ . | 2 |