Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1001 | Find the difference of the vectors $ \vec{v_1} = \left(-7,~-3\right) $ and $ \vec{v_2} = \left(-2,~2\right) $ . | 2 |
1002 | Find the projection of the vector $ \vec{v_1} = \left(3,~4\right) $ on the vector $ \vec{v_2} = \left(6,~8\right) $. | 2 |
1003 | Find the difference of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(3,~4\right) $ . | 2 |
1004 | Find the sum of the vectors $ \vec{v_1} = \left(6,~-2\right) $ and $ \vec{v_2} = \left(0,~-8\right) $ . | 2 |
1005 | Find the angle between vectors $ \left(0,~4\right)$ and $\left(\dfrac{ 3 \sqrt{ 2}}{ 2 },~\dfrac{ 3 \sqrt{ 2}}{ 2 }\right)$. | 2 |
1006 | Find the difference of the vectors $ \vec{v_1} = \left(3,~-8\right) $ and $ \vec{v_2} = \left(7,~\dfrac{ 21 }{ 8 }\right) $ . | 2 |
1007 | Find the sum of the vectors $ \vec{v_1} = \left(7,~-4\right) $ and $ \vec{v_2} = \left(-8,~9\right) $ . | 2 |
1008 | Find the difference of the vectors $ \vec{v_1} = \left(-27,~24\right) $ and $ \vec{v_2} = \left(5,~-40\right) $ . | 2 |
1009 | Find the difference of the vectors $ \vec{v_1} = \left(-27,~24\right) $ and $ \vec{v_2} = \left(-5,~-40\right) $ . | 2 |
1010 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~-4\right) $ . | 2 |
1011 | Find the magnitude of the vector $ \| \vec{v} \| = \left(7,~-24\right) $ . | 2 |
1012 | Find the difference of the vectors $ \vec{v_1} = \left(28,~-1\right) $ and $ \vec{v_2} = \left(-9,~0\right) $ . | 2 |
1013 | Find the difference of the vectors $ \vec{v_1} = \left(-20,~45\right) $ and $ \vec{v_2} = \left(37,~-1\right) $ . | 2 |
1014 | Find the difference of the vectors $ \vec{v_1} = \left(-20,~45\right) $ and $ \vec{v_2} = \left(-37,~1\right) $ . | 2 |
1015 | Find the difference of the vectors $ \vec{v_1} = \left(6,~0\right) $ and $ \vec{v_2} = \left(3,~3 \sqrt{ 3 }\right) $ . | 2 |
1016 | Find the projection of the vector $ \vec{v_1} = \left(6,~0\right) $ on the vector $ \vec{v_2} = \left(3,~3 \sqrt{ 3 }\right) $. | 2 |
1017 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~-2,~1\right) $ . | 2 |
1018 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 26 }{ 5 },~\dfrac{ 5 }{ 2 },~-\dfrac{ 9 }{ 2 }\right) $ . | 2 |
1019 | Find the magnitude of the vector $ \| \vec{v} \| = \left(40,~-30\right) $ . | 2 |
1020 | Find the sum of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(5,~7\right) $ . | 2 |
1021 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
1022 | Find the difference of the vectors $ \vec{v_1} = \left(6,~9,~3\right) $ and $ \vec{v_2} = \left(1,~3,~0\right) $ . | 2 |
1023 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~9\right) $ and $ \vec{v_2} = \left(5,~6\right) $ . | 2 |
1024 | Find the difference of the vectors $ \vec{v_1} = \left(-6,~7\right) $ and $ \vec{v_2} = \left(3,~8\right) $ . | 2 |
1025 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~-5\right) $ . | 2 |
1026 | Find the sum of the vectors $ \vec{v_1} = \left(-4,~-4\right) $ and $ \vec{v_2} = \left(1,~-4\right) $ . | 2 |
1027 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~-4\right) $ and $ \vec{v_2} = \left(1,~-4\right) $ . | 2 |
1028 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-9,~7\right) $ and $ \vec{v_2} = \left(10,~4\right) $ . | 2 |
1029 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-9,~7\right) $ . | 2 |
1030 | Find the magnitude of the vector $ \| \vec{v} \| = \left(110,~0\right) $ . | 2 |
1031 | Find the projection of the vector $ \vec{v_1} = \left(1,~2\right) $ on the vector $ \vec{v_2} = \left(\dfrac{ 1 }{ 10 },~\dfrac{ 1 }{ 5 }\right) $. | 2 |
1032 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 81 }{ 1000 },~-\dfrac{ 327 }{ 500 }\right) $ . | 2 |
1033 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~1\right) $ . | 2 |
1034 | Find the sum of the vectors $ \vec{v_1} = \left(6,~0\right) $ and $ \vec{v_2} = \left(1,~1\right) $ . | 2 |
1035 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~0,~3\right) $ and $ \vec{v_2} = \left(0,~3,~1\right) $ . | 2 |
1036 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~2\right) $ and $ \vec{v_2} = \left(3,~-6\right) $ . | 2 |
1037 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-6,~8\right) $ . | 2 |
1038 | Find the magnitude of the vector $ \| \vec{v} \| = \left(32,~-24\right) $ . | 2 |
1039 | Find the angle between vectors $ \left(3,~4\right)$ and $\left(-8,~7\right)$. | 2 |
1040 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1275,~2500\right) $ and $ \vec{v_2} = \left(\dfrac{ 66 }{ 5 },~\dfrac{ 41 }{ 5 }\right) $ . | 2 |
1041 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
1042 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(2,~8\right) $ . | 2 |
1043 | Find the angle between vectors $ \left(3,~4\right)$ and $\left(2,~8\right)$. | 2 |
1044 | Find the projection of the vector $ \vec{v_1} = \left(3,~4\right) $ on the vector $ \vec{v_2} = \left(2,~8\right) $. | 2 |
1045 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~4\right) $ and $ \vec{v_2} = \left(3,~-2\right) $ . | 2 |
1046 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~-24\right) $ and $ \vec{v_2} = \left(6,~1\right) $ . | 2 |
1047 | Find the angle between vectors $ \left(-2,~1\right)$ and $\left(-1,~-4\right)$. | 2 |
1048 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~5\right) $ . | 2 |
1049 | Determine whether the vectors $ \vec{v_1} = \left(4,~5\right) $ and $ \vec{v_2} = \left(-5,~11\right) $ are linearly independent or dependent. | 2 |
1050 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-5,~-4\right) $ and $ \vec{v_2} = \left(-2,~\dfrac{ 1 }{ 4 }\right) $ . | 2 |