Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1001 | Find the projection of the vector v1=(3, 4) on the vector v2=(6, 8). | 2 |
1002 | Find the difference of the vectors v1=(3, 4) and v2=(3, 4) . | 2 |
1003 | Find the sum of the vectors v1=(6, −2) and v2=(0, −8) . | 2 |
1004 | Find the angle between vectors (0, 4) and (232, 232). | 2 |
1005 | Find the difference of the vectors v1=(3, −8) and v2=(7, 821) . | 2 |
1006 | Find the sum of the vectors v1=(7, −4) and v2=(−8, 9) . | 2 |
1007 | Find the difference of the vectors v1=(−27, 24) and v2=(5, −40) . | 2 |
1008 | Find the difference of the vectors v1=(−27, 24) and v2=(−5, −40) . | 2 |
1009 | Find the magnitude of the vector ∥v∥=(−7, −4) . | 2 |
1010 | Find the magnitude of the vector ∥v∥=(7, −24) . | 2 |
1011 | Find the difference of the vectors v1=(28, −1) and v2=(−9, 0) . | 2 |
1012 | Find the difference of the vectors v1=(−20, 45) and v2=(37, −1) . | 2 |
1013 | Find the difference of the vectors v1=(−20, 45) and v2=(−37, 1) . | 2 |
1014 | Find the difference of the vectors v1=(6, 0) and v2=(3, 33) . | 2 |
1015 | Find the projection of the vector v1=(6, 0) on the vector v2=(3, 33). | 2 |
1016 | Find the magnitude of the vector ∥v∥=(2, −2, 1) . | 2 |
1017 | Find the magnitude of the vector ∥v∥=(526, 25, −29) . | 2 |
1018 | Find the magnitude of the vector ∥v∥=(40, −30) . | 2 |
1019 | Find the sum of the vectors v1=(3, 4) and v2=(5, 7) . | 2 |
1020 | Find the magnitude of the vector ∥v∥=(0, 0) . | 2 |
1021 | Find the difference of the vectors v1=(6, 9, 3) and v2=(1, 3, 0) . | 2 |
1022 | Find the sum of the vectors v1=(−2, 9) and v2=(5, 6) . | 2 |
1023 | Find the difference of the vectors v1=(−6, 7) and v2=(3, 8) . | 2 |
1024 | Find the magnitude of the vector ∥v∥=(2, −5) . | 2 |
1025 | Find the sum of the vectors v1=(−4, −4) and v2=(1, −4) . | 2 |
1026 | Find the difference of the vectors v1=(−4, −4) and v2=(1, −4) . | 2 |
1027 | Calculate the dot product of the vectors v1=(−9, 7) and v2=(10, 4) . | 2 |
1028 | Find the magnitude of the vector ∥v∥=(−9, 7) . | 2 |
1029 | Find the magnitude of the vector ∥v∥=(110, 0) . | 2 |
1030 | Find the projection of the vector v1=(1, 2) on the vector v2=(101, 51). | 2 |
1031 | Find the magnitude of the vector ∥v∥=(−100081, −500327) . | 2 |
1032 | Find the magnitude of the vector ∥v∥=(1, 1) . | 2 |
1033 | Find the sum of the vectors v1=(6, 0) and v2=(1, 1) . | 2 |
1034 | Calculate the cross product of the vectors v1=(1, 0, 3) and v2=(0, 3, 1) . | 2 |
1035 | Calculate the dot product of the vectors v1=(2, 2) and v2=(3, −6) . | 2 |
1036 | Find the magnitude of the vector ∥v∥=(−6, 8) . | 2 |
1037 | Find the magnitude of the vector ∥v∥=(32, −24) . | 2 |
1038 | Find the angle between vectors (3, 4) and (−8, 7). | 2 |
1039 | Calculate the dot product of the vectors v1=(1275, 2500) and v2=(566, 541) . | 2 |
1040 | Find the magnitude of the vector ∥v∥=(0, 0) . | 2 |
1041 | Calculate the dot product of the vectors v1=(3, 4) and v2=(2, 8) . | 2 |
1042 | Find the angle between vectors (3, 4) and (2, 8). | 2 |
1043 | Find the projection of the vector v1=(3, 4) on the vector v2=(2, 8). | 2 |
1044 | Find the sum of the vectors v1=(−1, 4) and v2=(3, −2) . | 2 |
1045 | Calculate the dot product of the vectors v1=(4, −24) and v2=(6, 1) . | 2 |
1046 | Find the angle between vectors (−2, 1) and (−1, −4). | 2 |
1047 | Find the magnitude of the vector ∥v∥=(4, 5) . | 2 |
1048 | Determine whether the vectors v1=(4, 5) and v2=(−5, 11) are linearly independent or dependent. | 2 |
1049 | Calculate the dot product of the vectors v1=(−5, −4) and v2=(−2, 41) . | 2 |
1050 | Determine whether the vectors v1=(−5, −4) and v2=(−2, 41) are linearly independent or dependent. | 2 |