Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
951 | Find the projection of the vector $ \vec{v_1} = \left(\dfrac{ 1 }{ 2 },~- \dfrac{\sqrt{ 3 }}{ 2 }\right) $ on the vector $ \vec{v_2} = \left(- \dfrac{\sqrt{ 2 }}{ 2 },~\dfrac{\sqrt{ 2 }}{ 2 }\right) $. | 2 |
952 | Find the angle between vectors $ \left(\dfrac{ 1 }{ 2 },~- \dfrac{\sqrt{ 3 }}{ 2 }\right)$ and $\left(- \dfrac{\sqrt{ 2 }}{ 2 },~\dfrac{\sqrt{ 2 }}{ 2 }\right)$. | 2 |
953 | Find the angle between vectors $ \left(\dfrac{ 1 }{ 2 },~- \dfrac{\sqrt{ 3 }}{ 2 }\right)$ and $\left(\dfrac{ 683 }{ 1000 },~-\dfrac{ 683 }{ 1000 }\right)$. | 2 |
954 | Find the projection of the vector $ \vec{v_1} = \left(\dfrac{ 1 }{ 2 },~- \dfrac{\sqrt{ 3 }}{ 2 }\right) $ on the vector $ \vec{v_2} = \left(\dfrac{ 683 }{ 1000 },~-\dfrac{ 683 }{ 1000 }\right) $. | 2 |
955 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-\dfrac{ 183 }{ 1000 },~-\dfrac{ 183 }{ 1000 }\right) $ and $ \vec{v_2} = \left(- \dfrac{\sqrt{ 2 }}{ 2 },~\dfrac{\sqrt{ 2 }}{ 2 }\right) $ . | 2 |
956 | Find the magnitude of the vector $ \| \vec{v} \| = \left(11.6881,~32.6073\right) $ . | 2 |
957 | Find the sum of the vectors $ \vec{v_1} = \left(11.6881,~32.6073\right) $ and $ \vec{v_2} = \left(7.8137,~6.5564\right) $ . | 2 |
958 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-4,~-3\right) $ and $ \vec{v_2} = \left(-5,~5\right) $ . | 2 |
959 | Find the projection of the vector $ \vec{v_1} = \left(2,~4\right) $ on the vector $ \vec{v_2} = \left(1,~-1\right) $. | 2 |
960 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~12\right) $ and $ \vec{v_2} = \left(0,~6\right) $ . | 2 |
961 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 88 }{ 5 },~1,~1\right) $ . | 2 |
962 | Find the projection of the vector $ \vec{v_1} = \left(-3,~4,~-\sqrt{ 7 }\right) $ on the vector $ \vec{v_2} = \left(3,~-4,~\sqrt{ 7 }\right) $. | 2 |
963 | Find the projection of the vector $ \vec{v_1} = \left(3,~-4,~\sqrt{ 7 }\right) $ on the vector $ \vec{v_2} = \left(0,~0,~0\right) $. | 2 |
964 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~-4,~\sqrt{ 7 }\right) $ . | 2 |
965 | Find the angle between vectors $ \left(\sqrt{ 3 },~-7,~0\right)$ and $\left(\sqrt{ 3 },~1,~-2\right)$. | 2 |
966 | Find the sum of the vectors $ \vec{v_1} = \left(3,~3\right) $ and $ \vec{v_2} = \left(5,~-2\right) $ . | 2 |
967 | Find the sum of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(5,~-2\right) $ . | 2 |
968 | Find the projection of the vector $ \vec{v_1} = \left(1,~-1,~1\right) $ on the vector $ \vec{v_2} = \left(1,~1,~-2\right) $. | 2 |
969 | Find the angle between vectors $ \left(3,~5\right)$ and $\left(5,~3\right)$. | 2 |
970 | Determine whether the vectors $ \vec{v_1} = \left(4,~4\right) $ and $ \vec{v_2} = \left(5,~5\right) $ are linearly independent or dependent. | 2 |
971 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~4\right) $ . | 2 |
972 | Find the angle between vectors $ \left(4,~5\right)$ and $\left(6,~8\right)$. | 2 |
973 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~5\right) $ . | 2 |
974 | Find the difference of the vectors $ \vec{v_1} = \left(4,~5\right) $ and $ \vec{v_2} = \left(6,~8\right) $ . | 2 |
975 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~-1\right) $ and $ \vec{v_2} = \left(2,~1\right) $ . | 2 |
976 | Find the angle between vectors $ \left(3,~-8,~6\right)$ and $\left(-5,~4,~9\right)$. | 2 |
977 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-96,~-57,~-28\right) $ . | 2 |
978 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-96,~-57,~-28\right) $ and $ \vec{v_2} = \left(-2,~0,~7\right) $ . | 2 |
979 | Find the angle between vectors $ \left(-96,~-57,~-28\right)$ and $\left(-2,~0,~7\right)$. | 2 |
980 | Find the sum of the vectors $ \vec{v_1} = \left(9,~4\right) $ and $ \vec{v_2} = \left(1,~7\right) $ . | 2 |
981 | Find the angle between vectors $ \left(1,~2,~2\right)$ and $\left(2,~2,~1\right)$. | 2 |
982 | Find the angle between vectors $ \left(1,~0,~0\right)$ and $\left(-1,~0,~1\right)$. | 2 |
983 | Find the angle between vectors $ \left(1,~2,~3\right)$ and $\left(-8,~1,~2\right)$. | 2 |
984 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 9 }{ 2 },~0\right) $ . | 2 |
985 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 9 }{ 2 },~\dfrac{ 16 }{ 5 }\right) $ . | 2 |
986 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 21 }{ 4 },~7\right) $ . | 2 |
987 | Find the angle between vectors $ \left(\dfrac{ 21 }{ 4 },~7\right)$ and $\left(3,~4\right)$. | 2 |
988 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-4,~-1\right) $ and $ \vec{v_2} = \left(-7,~-9\right) $ . | 2 |
989 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~4\right) $ and $ \vec{v_2} = \left(-6,~5\right) $ . | 2 |
990 | Find the sum of the vectors $ \vec{v_1} = \left(0,~2,~-3\right) $ and $ \vec{v_2} = \left(2,~6,~4\right) $ . | 2 |
991 | Find the sum of the vectors $ \vec{v_1} = \left(8,~6\right) $ and $ \vec{v_2} = \left(-6,~0\right) $ . | 2 |
992 | Calculate the dot product of the vectors $ \vec{v_1} = \left(10,~1\right) $ and $ \vec{v_2} = \left(1,~10\right) $ . | 2 |
993 | Calculate the dot product of the vectors $ \vec{v_1} = \left(10,~1\right) $ and $ \vec{v_2} = \left(10,~1\right) $ . | 2 |
994 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~-4\right) $ and $ \vec{v_2} = \left(-4,~1\right) $ . | 2 |
995 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~-4\right) $ and $ \vec{v_2} = \left(5,~-4\right) $ . | 2 |
996 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-8,~-4\right) $ and $ \vec{v_2} = \left(-8,~-4\right) $ . | 2 |
997 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~6\right) $ and $ \vec{v_2} = \left(4,~-1\right) $ . | 2 |
998 | Calculate the dot product of the vectors $ \vec{v_1} = \left(12,~-4\right) $ and $ \vec{v_2} = \left(5,~1\right) $ . | 2 |
999 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~-1\right) $ . | 2 |
1000 | Find the projection of the vector $ \vec{v_1} = \left(-7,~-3\right) $ on the vector $ \vec{v_2} = \left(1,~-1\right) $. | 2 |