Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
601 | Find the difference of the vectors $ \vec{v_1} = \left(5,~3\right) $ and $ \vec{v_2} = \left(3,~5\right) $ . | 2 |
602 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~4\right) $ . | 2 |
603 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~9\right) $ and $ \vec{v_2} = \left(-5,~2\right) $ . | 2 |
604 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~9\right) $ and $ \vec{v_2} = \left(-5,~2\right) $ . | 2 |
605 | Find the difference of the vectors $ \vec{v_1} = \left(-1,~2\right) $ and $ \vec{v_2} = \left(4,~26\right) $ . | 2 |
606 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 8 }{ 17 },~\dfrac{ 15 }{ 17 }\right) $ . | 2 |
607 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 20 }{ 7 },~-\dfrac{ 25 }{ 7 }\right) $ and $ \vec{v_2} = \left(15,~78\right) $ . | 2 |
608 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 72 }{ 41 },~-\dfrac{ 320 }{ 41 }\right) $ . | 2 |
609 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 2 }{ 3 },~\sqrt{ 3 },~2\right) $ . | 2 |
610 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 1 }{ 2 },~\sqrt{ 3 },~5\right) $ and $ \vec{v_2} = \left(4,~-\sqrt{ 3 },~10\right) $ . | 2 |
611 | Find the magnitude of the vector $ \| \vec{v} \| = \left(9,~40\right) $ . | 2 |
612 | Find the angle between vectors $ \left(4,~-1\right)$ and $\left(3,~2\right)$. | 2 |
613 | Find the sum of the vectors $ \vec{v_1} = \left(-\dfrac{ 2 }{ 5 },~\dfrac{ 4 }{ 5 }\right) $ and $ \vec{v_2} = \left(9,~26\right) $ . | 2 |
614 | Find the difference of the vectors $ \vec{v_1} = \left(-\dfrac{ 1 }{ 5 },~\dfrac{ 3 }{ 5 }\right) $ and $ \vec{v_2} = \left(3,~28\right) $ . | 2 |
615 | Find the sum of the vectors $ \vec{v_1} = \left(-\dfrac{ 4 }{ 9 },~-\dfrac{ 16 }{ 9 }\right) $ and $ \vec{v_2} = \left(36,~100\right) $ . | 2 |
616 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 100493 }{ 1000 },~-\dfrac{ 1419 }{ 500 }\right) $ . | 2 |
617 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 14 }{ 5 },~\dfrac{ 123 }{ 5 }\right) $ . | 2 |
618 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 3 }{ 5 },~\dfrac{ 4 }{ 5 }\right) $ . | 2 |
619 | Find the magnitude of the vector $ \| \vec{v} \| = \left(9,~40\right) $ . | 2 |
620 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~12\right) $ . | 2 |
621 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~0,~2\right) $ . | 2 |
622 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-7\right) $ and $ \vec{v_2} = \left(5,~9\right) $ . | 2 |
623 | Find the projection of the vector $ \vec{v_1} = \left(2,~-7\right) $ on the vector $ \vec{v_2} = \left(5,~9\right) $. | 2 |
624 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-7\right) $ and $ \vec{v_2} = \left(5,~9\right) $ . | 2 |
625 | Find the angle between vectors $ \left(3,~2\right)$ and $\left(1,~-4\right)$. | 2 |
626 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~6\right) $ . | 2 |
627 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-9,~7\right) $ . | 2 |
628 | Find the angle between vectors $ \left(2,~-1\right)$ and $\left(2,~3\right)$. | 2 |
629 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~6\right) $ . | 2 |
630 | Calculate the dot product of the vectors $ \vec{v_1} = \left(9,~3\right) $ and $ \vec{v_2} = \left(-8,~5\right) $ . | 2 |
631 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 8 }{ 17 },~\dfrac{ 15 }{ 17 }\right) $ . | 2 |
632 | Find the sum of the vectors $ \vec{v_1} = \left(-\dfrac{ 15 }{ 7 },~\dfrac{ 30 }{ 7 }\right) $ and $ \vec{v_2} = \left(10,~46\right) $ . | 2 |
633 | Find the angle between vectors $ \left(0,~5\right)$ and $\left(6,~6\right)$. | 2 |
634 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~5\right) $ and $ \vec{v_2} = \left(-7,~4\right) $ . | 2 |
635 | Find the angle between vectors $ \left(-6,~4\right)$ and $\left(3,~3\right)$. | 2 |
636 | Find the angle between vectors $ \left(0,~-5,~5\right)$ and $\left(3,~1,~1\right)$. | 2 |
637 | Find the angle between vectors $ \left(5,~3\right)$ and $\left(1,~3\right)$. | 2 |
638 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~3\right) $ and $ \vec{v_2} = \left(-7,~-14\right) $ . | 2 |
639 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~6\right) $ . | 2 |
640 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~0\right) $ . | 2 |
641 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~3\right) $ and $ \vec{v_2} = \left(-1,~2\right) $ . | 2 |
642 | Find the difference of the vectors $ \vec{v_1} = \left(9,~-7\right) $ and $ \vec{v_2} = \left(-10,~7\right) $ . | 2 |
643 | Find the difference of the vectors $ \vec{v_1} = \left(1,~0,~0\right) $ and $ \vec{v_2} = \left(0,~1,~0\right) $ . | 2 |
644 | Find the sum of the vectors $ \vec{v_1} = \left(1,~0,~0\right) $ and $ \vec{v_2} = \left(0,~1,~0\right) $ . | 2 |
645 | Find the difference of the vectors $ \vec{v_1} = \left(3,~1\right) $ and $ \vec{v_2} = \left(-2,~-2\right) $ . | 2 |
646 | Find the magnitude of the vector $ \| \vec{v} \| = \left(50,~105\right) $ . | 2 |
647 | Find the angle between vectors $ \left(-4,~-3\right)$ and $\left(-1,~3\right)$. | 2 |
648 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~1\right) $ . | 2 |
649 | Find the angle between vectors $ \left(-4,~3\right)$ and $\left(5,~7\right)$. | 2 |
650 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~1\right) $ and $ \vec{v_2} = \left(2,~-6\right) $ . | 2 |