Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
551 | Find the angle between vectors $ \left(-4,~-1\right)$ and $\left(4,~2\right)$. | 2 |
552 | Find the difference of the vectors $ \vec{v_1} = \left(0,~-3\right) $ and $ \vec{v_2} = \left(1,~-1\right) $ . | 2 |
553 | Find the difference of the vectors $ \vec{v_1} = \left(1,~-1\right) $ and $ \vec{v_2} = \left(-4,~-1\right) $ . | 2 |
554 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~0\right) $ . | 2 |
555 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-11,~-5\right) $ . | 2 |
556 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~3\right) $ and $ \vec{v_2} = \left(4,~3\right) $ . | 2 |
557 | Find the angle between vectors $ \left(-1,~0\right)$ and $\left(-4,~0\right)$. | 2 |
558 | Find the angle between vectors $ \left(3,~3\right)$ and $\left(-5,~-20\right)$. | 2 |
559 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~-3\right) $ and $ \vec{v_2} = \left(4,~-2\right) $ . | 2 |
560 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~-1\right) $ . | 2 |
561 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~1\right) $ . | 2 |
562 | Find the sum of the vectors $ \vec{v_1} = \left(5,~4\right) $ and $ \vec{v_2} = \left(6,~-9\right) $ . | 2 |
563 | Find the sum of the vectors $ \vec{v_1} = \left(8,~3\right) $ and $ \vec{v_2} = \left(-3,~-4\right) $ . | 2 |
564 | Find the sum of the vectors $ \vec{v_1} = \left(5,~-4\right) $ and $ \vec{v_2} = \left(-2,~3\right) $ . | 2 |
565 | Find the difference of the vectors $ \vec{v_1} = \left(18,~45\right) $ and $ \vec{v_2} = \left(18,~0\right) $ . | 2 |
566 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 347 }{ 100 },~\dfrac{ 197 }{ 10 }\right) $ . | 2 |
567 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~8\right) $ . | 2 |
568 | Find the sum of the vectors $ \vec{v_1} = \left(5,~-8\right) $ and $ \vec{v_2} = \left(1,~-7\right) $ . | 2 |
569 | Find the angle between vectors $ \left(-1,~8\right)$ and $\left(0,~-1\right)$. | 2 |
570 | Find the angle between vectors $ \left(-3,~-1\right)$ and $\left(-9,~-2\right)$. | 2 |
571 | Find the angle between vectors $ \left(-2,~1\right)$ and $\left(-4,~2\right)$. | 2 |
572 | Find the sum of the vectors $ \vec{v_1} = \left(4,~0\right) $ and $ \vec{v_2} = \left(0,~6\right) $ . | 2 |
573 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~1\right) $ . | 2 |
574 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~12\right) $ . | 2 |
575 | Find the magnitude of the vector $ \| \vec{v} \| = \left(10,~24\right) $ . | 2 |
576 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~2\right) $ and $ \vec{v_2} = \left(5,~-6\right) $ . | 2 |
577 | Find the sum of the vectors $ \vec{v_1} = \left(5,~7\right) $ and $ \vec{v_2} = \left(-1,~1\right) $ . | 2 |
578 | Find the difference of the vectors $ \vec{v_1} = \left(5,~7\right) $ and $ \vec{v_2} = \left(-1,~1\right) $ . | 2 |
579 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~7\right) $ . | 2 |
580 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~7\right) $ and $ \vec{v_2} = \left(-1,~1\right) $ . | 2 |
581 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~2\right) $ and $ \vec{v_2} = \left(8,~-4\right) $ . | 2 |
582 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~1\right) $ . | 2 |
583 | Find the sum of the vectors $ \vec{v_1} = \left(5,~2\right) $ and $ \vec{v_2} = \left(9,~-4\right) $ . | 2 |
584 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~-1\right) $ . | 2 |
585 | Find the sum of the vectors $ \vec{v_1} = \left(-6,~-4\right) $ and $ \vec{v_2} = \left(3,~-9\right) $ . | 2 |
586 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~5\right) $ and $ \vec{v_2} = \left(4,~3\right) $ . | 2 |
587 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~-9\right) $ and $ \vec{v_2} = \left(-3,~1\right) $ . | 2 |
588 | Find the sum of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(-6,~3\right) $ . | 2 |
589 | Find the sum of the vectors $ \vec{v_1} = \left(-6,~15\right) $ and $ \vec{v_2} = \left(24,~18\right) $ . | 2 |
590 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-9\right) $ and $ \vec{v_2} = \left(7,~6\right) $ . | 2 |
591 | Find the sum of the vectors $ \vec{v_1} = \left(-5,~-4\right) $ and $ \vec{v_2} = \left(4,~8\right) $ . | 2 |
592 | Find the angle between vectors $ \left(3,~3,~10\right)$ and $\left(7,~5,~0\right)$. | 2 |
593 | Find the sum of the vectors $ \vec{v_1} = \left(4,~4\right) $ and $ \vec{v_2} = \left(-2,~-2\right) $ . | 2 |
594 | Find the angle between vectors $ \left(4,~3\right)$ and $\left(-1,~-1\right)$. | 2 |
595 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-4,~4\right) $ and $ \vec{v_2} = \left(2,~5\right) $ . | 2 |
596 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\sqrt{ 17 },~5\right) $ . | 2 |
597 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~2\right) $ and $ \vec{v_2} = \left(0,~0\right) $ . | 2 |
598 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~0\right) $ and $ \vec{v_2} = \left(2,~0\right) $ . | 2 |
599 | Find the projection of the vector $ \vec{v_1} = \left(-1,~-8,~3\right) $ on the vector $ \vec{v_2} = \left(-3,~-3,~-3\right) $. | 2 |
600 | Find the sum of the vectors $ \vec{v_1} = \left(5,~3\right) $ and $ \vec{v_2} = \left(3,~5\right) $ . | 2 |