Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
651 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~0\right) $ . | 2 |
652 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
653 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~-2,~2\right) $ . | 2 |
654 | Find the projection of the vector $ \vec{v_1} = \left(-2,~3,~1\right) $ on the vector $ \vec{v_2} = \left(1,~1,~2\right) $. | 2 |
655 | Find the angle between vectors $ \left(3,~4\right)$ and $\left(6,~8\right)$. | 2 |
656 | Determine whether the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(6,~8\right) $ are linearly independent or dependent. | 2 |
657 | Find the angle between vectors $ \left(-2,~3,~1\right)$ and $\left(1,~1,~2\right)$. | 2 |
658 | Find the projection of the vector $ \vec{v_1} = \left(3,~-4\right) $ on the vector $ \vec{v_2} = \left(-18,~24\right) $. | 2 |
659 | Find the sum of the vectors $ \vec{v_1} = \left(4,~-3\right) $ and $ \vec{v_2} = \left(1,~5\right) $ . | 2 |
660 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~5\right) $ and $ \vec{v_2} = \left(4,~1\right) $ . | 2 |
661 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~7,~5\right) $ and $ \vec{v_2} = \left(9,~9,~6\right) $ . | 2 |
662 | Find the angle between vectors $ \left(8,~7,~5\right)$ and $\left(9,~9,~6\right)$. | 2 |
663 | Find the sum of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(5,~-1\right) $ . | 2 |
664 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~2\right) $ . | 2 |
665 | Find the sum of the vectors $ \vec{v_1} = \left(0,~3\right) $ and $ \vec{v_2} = \left(3,~7\right) $ . | 2 |
666 | Find the sum of the vectors $ \vec{v_1} = \left(0,~-5\right) $ and $ \vec{v_2} = \left(-5,~5\right) $ . | 2 |
667 | Find the sum of the vectors $ \vec{v_1} = \left(0,~6\right) $ and $ \vec{v_2} = \left(2,~1\right) $ . | 2 |
668 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~3,~1\right) $ . | 2 |
669 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-3,~8,~0\right) $ and $ \vec{v_2} = \left(-7,~6,~0\right) $ . | 2 |
670 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-3,~8,~0\right) $ and $ \vec{v_2} = \left(-2,~6,~0\right) $ . | 2 |
671 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~1\right) $ . | 2 |
672 | Find the angle between vectors $ \left(1,~0\right)$ and $\left(-1,~0\right)$. | 2 |
673 | Find the sum of the vectors $ \vec{v_1} = \left(1,~0\right) $ and $ \vec{v_2} = \left(-\dfrac{ 1 }{ 2 },~\dfrac{\sqrt{ 3 }}{ 2 }\right) $ . | 2 |
674 | Find the projection of the vector $ \vec{v_1} = \left(2,~-1\right) $ on the vector $ \vec{v_2} = \left(-1,~3\right) $. | 2 |
675 | Find the angle between vectors $ \left(2,~-1\right)$ and $\left(-1,~3\right)$. | 2 |
676 | Find the projection of the vector $ \vec{v_1} = \left(1,~1,~1\right) $ on the vector $ \vec{v_2} = \left(0,~2,~1\right) $. | 2 |
677 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~1,~2\right) $ and $ \vec{v_2} = \left(1,~1,~5\right) $ . | 2 |
678 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~1,~1\right) $ and $ \vec{v_2} = \left(2,~1,~0\right) $ . | 2 |
679 | Find the difference of the vectors $ \vec{v_1} = \left(10,~-4\right) $ and $ \vec{v_2} = \left(0,~-1\right) $ . | 2 |
680 | Find the difference of the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(3,~4\right) $ . | 2 |
681 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(\dfrac{ 1 }{ 2 },~-\dfrac{ 1 }{ 2 }\right) $ . | 2 |
682 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 7 }{ 5 },~\dfrac{ 7 }{ 5 }\right) $ . | 2 |
683 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 7 }{ 5 },~\dfrac{ 7 }{ 5 }\right) $ and $ \vec{v_2} = \left(4,~-4\right) $ . | 2 |
684 | Find the sum of the vectors $ \vec{v_1} = \left(8,~0\right) $ and $ \vec{v_2} = \left(\dfrac{ 529919 }{ 100000 },~\dfrac{ 53003 }{ 6250 }\right) $ . | 2 |
685 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~5\right) $ and $ \vec{v_2} = \left(6,~3\right) $ . | 2 |
686 | Find the angle between vectors $ \left(0,~-1\right)$ and $\left(4,~1\right)$. | 2 |
687 | Find the angle between vectors $ \left(1,~-2\right)$ and $\left(4,~1\right)$. | 2 |
688 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(-2,~3\right) $ . | 2 |
689 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(-3,~2\right) $ . | 2 |
690 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(-3,~-2\right) $ . | 2 |
691 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~-3\right) $ and $ \vec{v_2} = \left(2,~-3\right) $ . | 2 |
692 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~-2\right) $ . | 2 |
693 | Find the sum of the vectors $ \vec{v_1} = \left(5,~8\right) $ and $ \vec{v_2} = \left(-9,~2\right) $ . | 2 |
694 | Find the sum of the vectors $ \vec{v_1} = \left(6,~-5\right) $ and $ \vec{v_2} = \left(-4,~5\right) $ . | 2 |
695 | Calculate the cross product of the vectors $ \vec{v_1} = \left(5,~-2,~2\right) $ and $ \vec{v_2} = \left(-20,~8,~-8\right) $ . | 2 |
696 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-4\right) $ and $ \vec{v_2} = \left(-1,~2\right) $ . | 2 |
697 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~5\right) $ and $ \vec{v_2} = \left(-24,~40\right) $ . | 2 |
698 | Find the sum of the vectors $ \vec{v_1} = \left(9,~-4\right) $ and $ \vec{v_2} = \left(-10,~7\right) $ . | 2 |
699 | Find the difference of the vectors $ \vec{v_1} = \left(8,~-6\right) $ and $ \vec{v_2} = \left(-4,~8\right) $ . | 2 |
700 | Find the sum of the vectors $ \vec{v_1} = \left(-36,~20\right) $ and $ \vec{v_2} = \left(-2,~-4\right) $ . | 2 |