Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
501 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~11,~10\right) $ . | 2 |
502 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~58\right) $ and $ \vec{v_2} = \left(3,~17\right) $ . | 2 |
503 | Find the difference of the vectors $ \vec{v_1} = \left(10,~10\right) $ and $ \vec{v_2} = \left(21,~21\right) $ . | 2 |
504 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~-1\right) $ . | 2 |
505 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~-12\right) $ . | 2 |
506 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~-8,~-4\right) $ . | 2 |
507 | Find the sum of the vectors $ \vec{v_1} = \left(0,~4\right) $ and $ \vec{v_2} = \left(4,~1\right) $ . | 2 |
508 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 16 }{ 5 },~\dfrac{ 24 }{ 5 }\right) $ and $ \vec{v_2} = \left(-3,~2\right) $ . | 2 |
509 | Find the difference of the vectors $ \vec{v_1} = \left(0,~4\right) $ and $ \vec{v_2} = \left(4,~1\right) $ . | 2 |
510 | Find the angle between vectors $ \left(0,~4\right)$ and $\left(4,~1\right)$. | 2 |
511 | Find the difference of the vectors $ \vec{v_1} = \left(5,~2\right) $ and $ \vec{v_2} = \left(3,~-1\right) $ . | 2 |
512 | Find the magnitude of the vector $ \| \vec{v} \| = \left(7,~5\right) $ . | 2 |
513 | Find the angle between vectors $ \left(0,~40\right)$ and $\left(18,~0\right)$. | 2 |
514 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~0,~7\right) $ . | 2 |
515 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~2\right) $ . | 2 |
516 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-8,~4,~16\right) $ and $ \vec{v_2} = \left(0,~0,~0\right) $ . | 2 |
517 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
518 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~-4\right) $ . | 2 |
519 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-1\right) $ and $ \vec{v_2} = \left(-16,~-20\right) $ . | 2 |
520 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-1\right) $ and $ \vec{v_2} = \left(-20,~-25\right) $ . | 2 |
521 | Determine whether the vectors $ \vec{v_1} = \left(3,~-5\right) $ and $ \vec{v_2} = \left(-6,~10\right) $ are linearly independent or dependent. | 2 |
522 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-10,~10\right) $ . | 2 |
523 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~22\right) $ . | 2 |
524 | Find the magnitude of the vector $ \| \vec{v} \| = \left(15,~-15\right) $ . | 2 |
525 | Find the sum of the vectors $ \vec{v_1} = \left(-9,~4\right) $ and $ \vec{v_2} = \left(-2,~1\right) $ . | 2 |
526 | Determine whether the vectors $ \vec{v_1} = \left(0,~-32\right) $ and $ \vec{v_2} = \left(6,~-185\right) $ are linearly independent or dependent. | 2 |
527 | Find the angle between vectors $ \left(0,~-32\right)$ and $\left(6,~-185\right)$. | 2 |
528 | Find the sum of the vectors $ \vec{v_1} = \left(0,~-32\right) $ and $ \vec{v_2} = \left(6,~-185\right) $ . | 2 |
529 | Find the difference of the vectors $ \vec{v_1} = \left(7,~9\right) $ and $ \vec{v_2} = \left(-30,~40\right) $ . | 2 |
530 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~-6\right) $ . | 2 |
531 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~-4\right) $ . | 2 |
532 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~3,~1\right) $ . | 2 |
533 | Find the difference of the vectors $ \vec{v_1} = \left(\dfrac{ 23 }{ 20 },~0\right) $ and $ \vec{v_2} = \left(\dfrac{ 41 }{ 20 },~0\right) $ . | 2 |
534 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~6\right) $ and $ \vec{v_2} = \left(2,~1\right) $ . | 2 |
535 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~6\right) $ and $ \vec{v_2} = \left(2,~-1\right) $ . | 2 |
536 | Find the magnitude of the vector $ \| \vec{v} \| = \left(10,~-3\right) $ . | 2 |
537 | Find the magnitude of the vector $ \| \vec{v} \| = \left(10,~-8\right) $ . | 2 |
538 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~-4\right) $ and $ \vec{v_2} = \left(7,~1\right) $ . | 2 |
539 | Find the difference of the vectors $ \vec{v_1} = \left(5,~7\right) $ and $ \vec{v_2} = \left(-9,~28\right) $ . | 2 |
540 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~0,~0\right) $ and $ \vec{v_2} = \left(0,~0,~0\right) $ . | 2 |
541 | Find the sum of the vectors $ \vec{v_1} = \left(10,~0\right) $ and $ \vec{v_2} = \left(-\dfrac{ 143 }{ 10 },~-\dfrac{ 117 }{ 50 }\right) $ . | 2 |
542 | Find the sum of the vectors $ \vec{v_1} = \left(3,~-1\right) $ and $ \vec{v_2} = \left(16,~12\right) $ . | 2 |
543 | Find the sum of the vectors $ \vec{v_1} = \left(3,~3\right) $ and $ \vec{v_2} = \left(3,~-1\right) $ . | 2 |
544 | Find the difference of the vectors $ \vec{v_1} = \left(12,~-4\right) $ and $ \vec{v_2} = \left(32,~24\right) $ . | 2 |
545 | Calculate the dot product of the vectors $ \vec{v_1} = \left(7,~-4\right) $ and $ \vec{v_2} = \left(1,~-9\right) $ . | 2 |
546 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~6\right) $ . | 2 |
547 | Find the sum of the vectors $ \vec{v_1} = \left(24,~-24\right) $ and $ \vec{v_2} = \left(-7,~10\right) $ . | 2 |
548 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~-1\right) $ . | 2 |
549 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~-1\right) $ and $ \vec{v_2} = \left(4,~2\right) $ . | 2 |
550 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~-1\right) $ . | 2 |