Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
451 | Find the projection of the vector $ \vec{v_1} = \left(2,~1\right) $ on the vector $ \vec{v_2} = \left(-3,~4\right) $. | 2 |
452 | Find the angle between vectors $ \left(3,~0\right)$ and $\left(5,~5\right)$. | 2 |
453 | Find the angle between vectors $ \left(5,~6\right)$ and $\left(-1,~4\right)$. | 2 |
454 | Calculate the cross product of the vectors $ \vec{v_1} = \left(4,~6,~2\right) $ and $ \vec{v_2} = \left(2,~3,~2\right) $ . | 2 |
455 | Find the angle between vectors $ \left(-3,~5\right)$ and $\left(-7,~-1\right)$. | 2 |
456 | Find the angle between vectors $ \left(-3,~5\right)$ and $\left(-4,~-6\right)$. | 2 |
457 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(-8,~6\right) $ . | 2 |
458 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~1\right) $ and $ \vec{v_2} = \left(3,~-2\right) $ . | 2 |
459 | Find the sum of the vectors $ \vec{v_1} = \left(1,~1\right) $ and $ \vec{v_2} = \left(10,~10\right) $ . | 2 |
460 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~1\right) $ . | 2 |
461 | Find the angle between vectors $ \left(5,~1,~0\right)$ and $\left(-16,~-12,~-8\right)$. | 2 |
462 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~-1,~0\right) $ and $ \vec{v_2} = \left(1,~0,~2\right) $ . | 2 |
463 | Find the difference of the vectors $ \vec{v_1} = \left(1,~-3\right) $ and $ \vec{v_2} = \left(4,~1\right) $ . | 2 |
464 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-4,~8\right) $ and $ \vec{v_2} = \left(-3,~-8\right) $ . | 2 |
465 | Find the angle between vectors $ \left(5,~-1\right)$ and $\left(4,~6\right)$. | 2 |
466 | Calculate the cross product of the vectors $ \vec{v_1} = \left(3,~5,~5\right) $ and $ \vec{v_2} = \left(-2,~-1,~4\right) $ . | 2 |
467 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-\dfrac{ 6321 }{ 5000 },~-0.0809,~-1\right) $ and $ \vec{v_2} = \left(0,~1,~0\right) $ . | 2 |
468 | Find the angle between vectors $ \left(-\dfrac{ 6321 }{ 5000 },~-0.0809,~-1\right)$ and $\left(0,~1,~0\right)$. | 2 |
469 | Find the difference of the vectors $ \vec{v_1} = \left(0,~1,~0\right) $ and $ \vec{v_2} = \left(-\dfrac{ 6321 }{ 5000 },~-0.0809,~-1\right) $ . | 2 |
470 | Find the projection of the vector $ \vec{v_1} = \left(0,~1,~0\right) $ on the vector $ \vec{v_2} = \left(-\dfrac{ 6321 }{ 5000 },~-0.0809,~-1\right) $. | 2 |
471 | Calculate the cross product of the vectors $ \vec{v_1} = \left(0,~1,~0\right) $ and $ \vec{v_2} = \left(-\dfrac{ 6321 }{ 5000 },~-0.0809,~-1\right) $ . | 2 |
472 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 6879 }{ 5000 },~-0.192,~-1\right) $ . | 2 |
473 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~42\right) $ . | 2 |
474 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-9,~40\right) $ . | 2 |
475 | Find the angle between vectors $ \left(-1,~5,~6\right)$ and $\left(2,~3,~-1\right)$. | 2 |
476 | Find the angle between vectors $ \left(80,~0\right)$ and $\left(170,~0\right)$. | 2 |
477 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~3\right) $ and $ \vec{v_2} = \left(-2,~4\right) $ . | 2 |
478 | Find the difference of the vectors $ \vec{v_1} = \left(-5,~7\right) $ and $ \vec{v_2} = \left(3,~10\right) $ . | 2 |
479 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 151 }{ 100 },~\dfrac{ 281 }{ 100 }\right) $ . | 2 |
480 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~5\right) $ . | 2 |
481 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-30,~23\right) $ . | 2 |
482 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~-24\right) $ . | 2 |
483 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~-4\right) $ and $ \vec{v_2} = \left(-8,~6\right) $ . | 2 |
484 | Find the angle between vectors $ \left(12,~11,~5\right)$ and $\left(4,~15,~5\right)$. | 2 |
485 | Find the sum of the vectors $ \vec{v_1} = \left(8,~6\right) $ and $ \vec{v_2} = \left(-8,~5\right) $ . | 2 |
486 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-9,~-19\right) $ . | 2 |
487 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~6\right) $ . | 2 |
488 | Find the difference of the vectors $ \vec{v_1} = \left(4,~-2\right) $ and $ \vec{v_2} = \left(-3,~5\right) $ . | 2 |
489 | Find the angle between vectors $ \left(3,~-5\right)$ and $\left(6,~-10\right)$. | 2 |
490 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~-4\right) $ . | 2 |
491 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~4\right) $ . | 2 |
492 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~4\right) $ . | 2 |
493 | Find the difference of the vectors $ \vec{v_1} = \left(2,~4\right) $ and $ \vec{v_2} = \left(-7,~8\right) $ . | 2 |
494 | Find the sum of the vectors $ \vec{v_1} = \left(2,~4\right) $ and $ \vec{v_2} = \left(-7,~8\right) $ . | 2 |
495 | Find the difference of the vectors $ \vec{v_1} = \left(-5,~12\right) $ and $ \vec{v_2} = \left(9,~-1\right) $ . | 2 |
496 | Determine whether the vectors $ \vec{v_1} = \left(-5,~12\right) $ and $ \vec{v_2} = \left(9,~-1\right) $ are linearly independent or dependent. | 2 |
497 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~12\right) $ . | 2 |
498 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-5,~12\right) $ and $ \vec{v_2} = \left(9,~-1\right) $ . | 2 |
499 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~-1,~0\right) $ and $ \vec{v_2} = \left(-1,~1,~0\right) $ . | 2 |
500 | Find the angle between vectors $ \left(12,~35\right)$ and $\left(60,~-11\right)$. | 2 |