Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
401 | $$ \displaystyle\int x{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 2 |
402 | $$ \displaystyle\int^{\pi/2}_{0} {\left(\sin\left(2\right){\cdot}x\right)}^{12}{\cdot}\cos\left(2\right){\cdot}x\, \mathrm d x $$ | 2 |
403 | $$ \displaystyle\int \left(2-x\right){\cdot}\left(3x-2{x}^{4}\right)\, \mathrm d x $$ | 2 |
404 | $$ \displaystyle\int^{2\pi}_{0} \cos\left(x\right){\cdot}\sin\left(x\right)\, \mathrm d x $$ | 2 |
405 | $$ \displaystyle\int \dfrac{1}{{\left(x+1\right)}^{\frac{3}{5}}}{\cdot}\dfrac{1}{{\left(x-4\right)}^{\frac{7}{5}}}\, \mathrm d x $$ | 2 |
406 | $$ \displaystyle\int \cos\left(5x-3\right)\, \mathrm d x $$ | 2 |
407 | $$ \displaystyle\int {\mathrm{e}}^{\frac{3-2x}{3}}\, \mathrm d x $$ | 2 |
408 | $$ \displaystyle\int x{\cdot}\cos\left(x\right)\, \mathrm d x $$ | 2 |
409 | $$ \displaystyle\int^{\pi}_{0} \cos\left(x\right){\cdot}\sin\left(x\right)\, \mathrm d x $$ | 2 |
410 | $$ \displaystyle\int \dfrac{1}{{\left(x+1\right)}^{\frac{3}{5}}{\cdot}{\left(x-4\right)}^{\frac{7}{5}}}\, \mathrm d x $$ | 2 |
411 | $$ \displaystyle\int^{2\pi}_{0} x{\cdot}\cos\left(x\right)\, \mathrm d x $$ | 2 |
412 | $$ \displaystyle\int^{2\pi}_{0} x{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 2 |
413 | $$ \displaystyle\int {\left(\ln\left(x-2\right)\right)}^{3}\, \mathrm d x $$ | 2 |
414 | $$ $$ | 2 |
415 | $$ \displaystyle\int \mathrm{e}^{\cos\left(x\right)}{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 2 |
416 | $$ \displaystyle\int^{\infty}_{0} \dfrac{{\mathrm{e}}^{\sin\left(x\right)}}{1+{x}^{2}}\, \mathrm d x $$ | 2 |
417 | $$ \displaystyle\int^{2\pi}_{0} x{\cdot}\sin\left(2x\right)\, \mathrm d x $$ | 2 |
418 | $$ \displaystyle\int {x}^{2}{\cdot}{\left(x-2\right)}^{\frac{3}{2}}\, \mathrm d x $$ | 2 |
419 | $$ \displaystyle\int \sin\left(3x\right)\, \mathrm d x $$ | 2 |
420 | $$ \displaystyle\int^{2\pi}_{0} x{\cdot}\cos\left(2x\right)\, \mathrm d x $$ | 2 |
421 | $$ $$ | 2 |
422 | $$ \displaystyle\int^{2}_{0} {\mathrm{e}}^{2}{\cdot}x\, \mathrm d x $$ | 2 |
423 | $$ \displaystyle\int 4{\cdot}\sqrt{\tan\left(\color{orangered}{\square}\right)}\, \mathrm d x $$ | 2 |
424 | $$ \displaystyle\int \cos\left(3x\right)\, \mathrm d x $$ | 2 |
425 | $$ \displaystyle\int {2}^{x}{\cdot}\cosh\left({2}^{x}\right)\, \mathrm d x $$ | 2 |
426 | $$ $$ | 2 |
427 | $$ \displaystyle\int \left(x-1\right){\cdot}\cos\left(3x\right)\, \mathrm d x $$ | 2 |
428 | $$ \displaystyle\int^{2\pi}_{0} \dfrac{x{\cdot}\cos\left(x\right)}{{\pi}}\, \mathrm d x $$ | 2 |
429 | $$ \displaystyle\int \left(3{x}^{3}-2x\right){\cdot}\left(3{x}^{3}-2{x}^{4}\right)\, \mathrm d x $$ | 2 |
430 | $$ \displaystyle\int^{\pi/3}_{0} \cos\left(x\right)\, \mathrm d x $$ | 2 |
431 | $$ \displaystyle\int \sqrt{3-2}{\cdot}{x}^{2}\, \mathrm d x $$ | 2 |
432 | $$ \displaystyle\int \sqrt{\tan\left(x\right)}\, \mathrm d x $$ | 2 |
433 | $$ \displaystyle\int {\mathrm{e}}^{x}-1\, \mathrm d x $$ | 2 |
434 | $$ \displaystyle\int^{2\pi}_{0} \dfrac{x{\cdot}\sin\left(x\right)}{{\pi}}\, \mathrm d x $$ | 2 |
435 | $$ $$ | 2 |
436 | $$ \displaystyle\int {\left(1+6x\right)}^{4}{\cdot}6x\, \mathrm d x $$ | 2 |
437 | $$ \displaystyle\int^{2\pi}_{0} \dfrac{x}{{\pi}}\, \mathrm d x $$ | 2 |
438 | $$ $$ | 2 |
439 | $$ \displaystyle\int^{\infty}_{0} {\mathrm{e}}^{-x}{\cdot}\cos\left(x\right)\, \mathrm d x $$ | 2 |
440 | $$ $$ | 2 |
441 | $$ \displaystyle\int^{2\pi}_{0} \dfrac{x{\cdot}\sin\left(2x\right)}{{\pi}}\, \mathrm d x $$ | 2 |
442 | $$ $$ | 2 |
443 | $$ \displaystyle\int^{2\pi}_{0} \dfrac{x{\cdot}\sin\left(3x\right)}{{\pi}}\, \mathrm d x $$ | 2 |
444 | $$ $$ | 2 |
445 | $$ \displaystyle\int 3{x}^{2}-2x+2\, \mathrm d x $$ | 2 |
446 | $$ \displaystyle\int^{2\pi}_{0} \dfrac{x{\cdot}\sin\left(4x\right)}{{\pi}}\, \mathrm d x $$ | 2 |
447 | $$ \displaystyle\int \dfrac{6{x}^{2}-2}{{x}^{3}-x}\, \mathrm d x $$ | 2 |
448 | $$ $$ | 2 |
449 | $$ \displaystyle\int \tan\left(x\right)\, \mathrm d x $$ | 2 |
450 | $$ \displaystyle\int \dfrac{32{x}^{3}}{\cos\left(2{x}^{4}+1\right)}\, \mathrm d x $$ | 2 |