Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
351 | $$ \displaystyle\int 5{x}^{4}+0.7\, \mathrm d x $$ | 2 |
352 | $$ \displaystyle\int^{2}_{0} \sqrt{1+{x}^{2}}\, \mathrm d x $$ | 2 |
353 | $$ \displaystyle\int \dfrac{1}{\sqrt{1-{x}^{2}-1{x}^{3}}}\, \mathrm d x $$ | 2 |
354 | $$ \displaystyle\int^{-\pi}_{0} {2}^{2}-{\left(2-2{\cdot}\sin\left(x\right)\right)}^{2}\, \mathrm d x $$ | 2 |
355 | $$ \displaystyle\int \dfrac{\ln\left(2x+1\right)}{x{\cdot}\left(x+1\right)}\, \mathrm d x $$ | 2 |
356 | $$ $$ | 2 |
357 | $$ $$ | 2 |
358 | $$ $$ | 2 |
359 | $$ $$ | 2 |
360 | $$ \displaystyle\int^{2\pi}_{\pi} {2}^{2}-{\left(2-2{\cdot}\sin\left(x\right)\right)}^{2}\, \mathrm d x $$ | 2 |
361 | $$ \displaystyle\int {x}^{2}{\cdot}{\left({x}^{3}-8\right)}^{22}\, \mathrm d x $$ | 2 |
362 | $$ \displaystyle\int^{1}_{0} 2x{\cdot}\left(\sqrt{x}-{x}^{2}\right)\, \mathrm d x $$ | 2 |
363 | $$ $$ | 2 |
364 | $$ \displaystyle\int^{\pi}_{\pi/2} \sin\left(x\right)-\cos\left(x\right)\, \mathrm d x $$ | 2 |
365 | $$ \displaystyle\int x{\cdot}{\left(2x+1\right)}^{15}\, \mathrm d x $$ | 2 |
366 | $$ \displaystyle\int^{1}_{1} \cos\left(\cos\left(t\right)\right)\, \mathrm d x $$ | 2 |
367 | $$ $$ | 2 |
368 | $$ $$ | 2 |
369 | $$ \displaystyle\int^{2.7182}_{1} x\, \mathrm d x $$ | 2 |
370 | $$ \displaystyle\int^{\pi/2}_{0} {\left(\sin\left(x\right)\right)}^{2}\, \mathrm d x $$ | 2 |
371 | $$ \displaystyle\int \left(2{x}^{2}+2x\right){\cdot}\left({x}^{4}-x\right)\, \mathrm d x $$ | 2 |
372 | $$ \displaystyle\int^{1}_{0} 2{\cdot}{\left(\sqrt{x}-{x}^{2}\right)}^{2}\, \mathrm d x $$ | 2 |
373 | $$ \displaystyle\int \dfrac{36}{49{\cdot}\left(3x-2\right)}\, \mathrm d x $$ | 2 |
374 | $$ \displaystyle\int \dfrac{5+6{\cdot}\sin\left(x\right)}{\sin\left(x\right){\cdot}\left(4+3{\cdot}\cos\left(x\right)\right)}\, \mathrm d x $$ | 2 |
375 | $$ \displaystyle\int \dfrac{8{a}^{3}}{\dfrac{2}{a}{\cdot}{\left({x}^{2}-\dfrac{60}{50}\right)}^{2}+4{a}^{2}}+0.28\, \mathrm d x $$ | 2 |
376 | $$ \displaystyle\int \dfrac{\left({x}^{4}+x\right){\cdot}\left(3x-1\right)}{{x}^{2}{\cdot}\sqrt{x}}\, \mathrm d x $$ | 2 |
377 | $$ \displaystyle\int \dfrac{1}{7{\cdot}{\left(2x+1\right)}^{2}}\, \mathrm d x $$ | 2 |
378 | $$ \displaystyle\int {2}^{2x}\, \mathrm d x $$ | 2 |
379 | $$ $$ | 2 |
380 | $$ \displaystyle\int \sqrt{\dfrac{x}{1-x}}\, \mathrm d x $$ | 2 |
381 | $$ \displaystyle\int^{1}_{0} \dfrac{32}{x+4}\, \mathrm d x $$ | 2 |
382 | $$ \displaystyle\int^{2}_{0} {x}^{3}\, \mathrm d x $$ | 2 |
383 | $$ \displaystyle\int \ln\left(x-1\right)\, \mathrm d x $$ | 2 |
384 | $$ \displaystyle\int^{1}_{0} 2{\cdot}\left(1-x\right){\cdot}\left(\sqrt{x}-{x}^{2}\right)\, \mathrm d x $$ | 2 |
385 | $$ \displaystyle\int \cos\left(3x+5\right)\, \mathrm d x $$ | 2 |
386 | $$ \displaystyle\int^{11}_{2} x-\sqrt{11}\, \mathrm d x $$ | 2 |
387 | $$ \displaystyle\int {\mathrm{e}}^{-{x}^{2}}\, \mathrm d x $$ | 2 |
388 | $$ $$ | 2 |
389 | $$ $$ | 2 |
390 | $$ \displaystyle\int^{2}_{1} \sqrt{1+{\left({x}^{2}+\dfrac{1}{4}{\cdot}\ln\left(x\right)\right)}^{2}}\, \mathrm d x $$ | 2 |
391 | $$ \displaystyle\int {x}^{2}{\cdot}\sin\left(x\right){\cdot}x{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 2 |
392 | $$ \displaystyle\int^{5}_{2} -3{x}^{3}\, \mathrm d x $$ | 2 |
393 | $$ \displaystyle\int \left(2-x\right){\cdot}\left(3x-2{x}^{2}\right)\, \mathrm d x $$ | 2 |
394 | $$ \displaystyle\int \left({x}^{2}-4\right){\cdot}\left(2x+3\right)\, \mathrm d x $$ | 2 |
395 | $$ $$ | 2 |
396 | $$ \displaystyle\int {4}^{3}x\, \mathrm d x $$ | 2 |
397 | $$ \displaystyle\int {\mathrm{e}}^{\frac{-{x}^{2}}{2}}\, \mathrm d x $$ | 2 |
398 | $$ $$ | 2 |
399 | $$ \displaystyle\int^{4}_{2} 4-\dfrac{5x}{4}\, \mathrm d x $$ | 2 |
400 | $$ \displaystyle\int {4}^{3x}\, \mathrm d x $$ | 2 |