Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
451 | $$ \displaystyle\int^{-1}_{-1} 3{x}^{2}-2x+2\, \mathrm d x $$ | 2 |
452 | $$ $$ | 2 |
453 | $$ \displaystyle\int^{2\pi}_{0} x\, \mathrm d x $$ | 2 |
454 | $$ $$ | 2 |
455 | $$ \displaystyle\int^{2\pi}_{0} \dfrac{x}{2{\pi}}\, \mathrm d x $$ | 2 |
456 | $$ $$ | 2 |
457 | $$ \displaystyle\int \dfrac{1}{{x}^{\frac{3}{2}}+8}\, \mathrm d x $$ | 2 |
458 | $$ \displaystyle\int \dfrac{32{x}^{3}}{\cos\left(2{x}^{4}+1\right)}\, \mathrm d x $$ | 2 |
459 | $$ \displaystyle\int^{6}_{1} \mathrm{e}\, \mathrm d x $$ | 2 |
460 | $$ $$ | 2 |
461 | $$ \displaystyle\int \dfrac{{x}^{\frac{1}{2}}+1}{{x}^{\frac{3}{2}}+8}\, \mathrm d x $$ | 2 |
462 | $$ \displaystyle\int \sin\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 2 |
463 | $$ \displaystyle\int \dfrac{{\mathrm{e}}^{{x}^{\frac{1}{3}}}{\cdot}{2}^{{\mathrm{e}}^{{x}^{\frac{1}{3}}}}}{{x}^{\frac{2}{3}}}\, \mathrm d x $$ | 2 |
464 | $$ $$ | 2 |
465 | $$ \displaystyle\int \sin\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 2 |
466 | $$ \displaystyle\int {x}^{-1}{\cdot}\sqrt{1+{x}^{-4}}\, \mathrm d x $$ | 2 |
467 | $$ \displaystyle\int -\sec\left(x\right){\cdot}\tan\left(x\right)-\cos\left(x\right)-\dfrac{2}{{x}^{3}}\, \mathrm d x $$ | 2 |
468 | $$ \displaystyle\int \cos\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 2 |
469 | $$ \displaystyle\int^{2\pi}_{0} \dfrac{x{\cdot}\cos\left(x\right)}{2{\pi}}\, \mathrm d x $$ | 2 |
470 | $$ \displaystyle\int^{2\pi}_{0} \dfrac{x{\cdot}\cos\left(2x\right)}{{\pi}}\, \mathrm d x $$ | 2 |
471 | $$ \displaystyle\int {x}^{3}{\cdot}\sqrt{5{x}^{2}+4}\, \mathrm d x $$ | 2 |
472 | $$ \displaystyle\int^{52}_{2839} 6.28\, \mathrm d x $$ | 2 |
473 | $$ \int {2}\pi{x}^{{\frac{{1}}{{3}}}}{\left(\sqrt{{{1}+\frac{{1}}{{{9}{x}^{{\frac{{4}}{{3}}}}}}}}\right)} \, d\,x $$ | 2 |
474 | $$ \displaystyle\int {\left(\sec\left(x\right)\right)}^{3}\, \mathrm d x $$ | 2 |
475 | $$ \displaystyle\int -x{\cdot}{\mathrm{e}}^{-x}\, \mathrm d x $$ | 2 |
476 | $$ \displaystyle\int^{\infty }_{0} {\mathrm{e}}^{{x}^{2}}{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 2 |
477 | $$ \displaystyle\int 2{\mathrm{e}}^{x}-1\, \mathrm d x $$ | 2 |
478 | $$ \displaystyle\int \dfrac{\cos\left(3\right){\cdot}\sqrt{x}}{\sqrt{x}}\, \mathrm d x $$ | 2 |
479 | $$ \displaystyle\int 1+x\, \mathrm d x $$ | 2 |
480 | $$ \displaystyle\int {\mathrm{e}}^{x}{\cdot}\cos\left(nx\right)\, \mathrm d x $$ | 2 |
481 | $$ \displaystyle\int {x}^{4}{\cdot}\sqrt{{x}^{3}+1}\, \mathrm d x $$ | 2 |
482 | $$ \displaystyle\int^{2}_{1} \sqrt{1+{\left(2{x}^{3}-\dfrac{1}{8{x}^{3}}\right)}^{2}}\, \mathrm d x $$ | 2 |
483 | $$ \displaystyle\int^{0}_{9} \sqrt{4-\sqrt{x}}\, \mathrm d x $$ | 2 |
484 | $$ \displaystyle\int^{9}_{0} \sqrt{4-\sqrt{x}}\, \mathrm d x $$ | 2 |
485 | $$ \displaystyle\int \left(2x-3\right){\cdot}\sin\left(2x\right)\, \mathrm d x $$ | 2 |
486 | $$ \displaystyle\int \dfrac{1}{x{\cdot}{\left(\ln\left(x\right)\right)}^{2}}\, \mathrm d x $$ | 2 |
487 | $$ \displaystyle\int^{5}_{2} \sqrt{1+{\left({x}^{2}+\dfrac{1}{4}\right)}^{2}}\, \mathrm d x $$ | 2 |
488 | $$ \displaystyle\int^{2}_{0} \sqrt{1+\sin\left(\dfrac{x}{2}\right)}\, \mathrm d x $$ | 2 |
489 | $$ \displaystyle\int \dfrac{1}{{\left(1+{x}^{2}\right)}^{n}}\, \mathrm d x $$ | 2 |
490 | $$ \displaystyle\int^{2}_{0} 2{\pi}{\cdot}\left(2x-{x}^{2}\right){\cdot}\sqrt{1+{\left(2-2x\right)}^{2}}\, \mathrm d x $$ | 2 |
491 | $$ \displaystyle\int \dfrac{x}{\tan\left(2-3{x}^{2}\right)}\, \mathrm d x $$ | 2 |
492 | $$ \displaystyle\int x{\cdot}\sqrt{x-11}\, \mathrm d x $$ | 2 |
493 | $$ \displaystyle\int^{\infty }_{0} \dfrac{\sin\left(x\right){\cdot}\cos\left(x\right)}{x}\, \mathrm d x $$ | 2 |
494 | $$ \displaystyle\int^{3}_{-3} \sqrt{4}-{x}^{2}\, \mathrm d x $$ | 2 |
495 | $$ \displaystyle\int^{5}_{2} \sqrt{1+({x}^{4}-\dfrac{1}{2}+\dfrac{1}{16{x}^{4}})}\, \mathrm d x $$ | 2 |
496 | $$ $$ | 2 |
497 | $$ \displaystyle\int \cos\left(2\right)+2{\cdot}\sin\left(2\right)\, \mathrm d x $$ | 2 |
498 | $$ \displaystyle\int 12x{\cdot}\ln\left(x\right)\, \mathrm d x $$ | 2 |
499 | $$ \displaystyle\int^{16}_{4} \sqrt{1+x-4}\, \mathrm d x $$ | 2 |
500 | $$ \displaystyle\int^{\infty }_{0} {\mathrm{e}}^{-{x}^{2}}\, \mathrm d x $$ | 2 |