Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
301 | $$ \displaystyle\int \mathrm{arcsec}\left(3x\right)\, \mathrm d x $$ | 2 |
302 | $$ \displaystyle\int^{1}_{0} 2x{\cdot}\left(\sqrt{x}-{x}^{2}\right)\, \mathrm d x $$ | 2 |
303 | $$ $$ | 2 |
304 | $$ $$ | 2 |
305 | $$ $$ | 2 |
306 | $$ \displaystyle\int^{-\pi/2}_{\pi/2} 2{\cdot}\csc\left(x\right)-\csc\left(x\right)\, \mathrm d x $$ | 2 |
307 | $$ \displaystyle\int {\left(\sec\left(x\right)\right)}^{3}\, \mathrm d x $$ | 2 |
308 | $$ \displaystyle\int \dfrac{{x}^{2}}{1+{x}^{3}}\, \mathrm d x $$ | 2 |
309 | $$ \displaystyle\int x{\cdot}{\mathrm{e}}^{x}\, \mathrm d x $$ | 2 |
310 | $$ $$ | 2 |
311 | $$ $$ | 2 |
312 | $$ $$ | 2 |
313 | $$ $$ | 2 |
314 | $$ \displaystyle\int \dfrac{1}{1+\sqrt{x}}\, \mathrm d x $$ | 2 |
315 | $$ $$ | 2 |
316 | $$ \displaystyle\int^{2}_{0} 1-{x}^{2}\, \mathrm d x $$ | 2 |
317 | $$ \displaystyle\int^{1}_{0} {x}^{2}+1\, \mathrm d x $$ | 2 |
318 | $$ \displaystyle\int^{1.41}_{-0.637} \sin\left(x\right)-{x}^{2}+1\, \mathrm d x $$ | 2 |
319 | $$ $$ | 2 |
320 | $$ \displaystyle\int \dfrac{5}{{x}^{2}}-\dfrac{2}{{x}^{3}}\, \mathrm d x $$ | 2 |
321 | $$ \int^{2}_{1} {x}{\cos{{\left({x}\right)}}} \, d\,x $$ | 2 |
322 | $$ \displaystyle\int^{1}_{0} 2x{\cdot}\left({x}^{2}-\sqrt{x}\right)\, \mathrm d x $$ | 2 |
323 | $$ \displaystyle\int^{\pi/2}_{0} \sin\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 2 |
324 | $$ \displaystyle\int^{\infty}_{1.5} {\mathrm{e}}^{-1.25x}\, \mathrm d x $$ | 2 |
325 | $$ \displaystyle\int \sin\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 2 |
326 | $$ $$ | 2 |
327 | $$ $$ | 2 |
328 | $$ \displaystyle\int^{\pi/6}_{0} \sin\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 2 |
329 | $$ \displaystyle\int x-\dfrac{1}{{x}^{3}}\, \mathrm d x $$ | 2 |
330 | $$ \int \sqrt{{{1}+{x}^{{2}}}} \, d\,x $$ | 2 |
331 | $$ \displaystyle\int^{3.52}_{0} \dfrac{1}{2{\pi}}{\cdot}{\left(3.88{\cdot}\sin\left(x-23.72\right)+89.38{\mathrm{e}}^{\frac{-x}{25.21}}\right)}^{2}\, \mathrm d x $$ | 2 |
332 | $$ \int \frac{{1}}{{{\cos{{\left({x}\right)}}}^{{3}}}} \, d\,x $$ | 2 |
333 | $$ $$ | 2 |
334 | $$ $$ | 2 |
335 | $$ \displaystyle\int {\left({x}^{2}+\sqrt{x}\right)}^{2}\, \mathrm d x $$ | 2 |
336 | $$ \displaystyle\int \sqrt{4-{x}^{2}}{\cdot}\left({x}^{3}{\cdot}\cos\left(\dfrac{x}{2}\right)+\dfrac{1}{2}\right)\, \mathrm d x $$ | 2 |
337 | $$ $$ | 2 |
338 | $$ \displaystyle\int {\left(2x+3\right)}^{0.6}\, \mathrm d x $$ | 2 |
339 | $$ \displaystyle\int \dfrac{1}{2}+\dfrac{1}{2}{\cdot}{\left(\sin\left(\dfrac{{\pi}}{2}{\cdot}\left(x-\dfrac{4c}{a}-\dfrac{{\pi}}{2}\right)\right)\right)}^{\frac{a}{2}}\, \mathrm d x $$ | 2 |
340 | $$ $$ | 2 |
341 | $$ \displaystyle\int \dfrac{6x+4}{\sqrt{2x+1}}\, \mathrm d x $$ | 2 |
342 | $$ $$ | 2 |
343 | $$ \displaystyle\int^{1}_{0} 2x{\cdot}\left({x}^{2}-\sqrt{x}\right){\cdot}\left(\sqrt{x}-{x}^{2}\right)\, \mathrm d x $$ | 2 |
344 | $$ $$ | 2 |
345 | $$ \displaystyle\int \dfrac{\sin\left(x\right)}{x}\, \mathrm d x $$ | 2 |
346 | $$ \displaystyle\int^{\pi}_{1} \dfrac{\sin\left(x\right)}{x}\, \mathrm d x $$ | 2 |
347 | $$ $$ | 2 |
348 | $$ $$ | 2 |
349 | $$ \displaystyle\int \dfrac{{x}^{3}}{\sqrt{1-{x}^{2}}}\, \mathrm d x $$ | 2 |
350 | $$ \displaystyle\int^{\pi}_{0} {2}^{2}-{\left(2-2{\cdot}\sin\left(x\right)\right)}^{2}\, \mathrm d x $$ | 2 |