Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
251 | $$ $$ | 2 |
252 | $$ \displaystyle\int^{\infty}_{1} \dfrac{1}{{x}^{5}}\, \mathrm d x $$ | 2 |
253 | $$ \displaystyle\int \dfrac{1}{{x}^{2}+1}\, \mathrm d x $$ | 2 |
254 | $$ \displaystyle\int^{2}_{1} {\mathrm{e}}^{x}-x\, \mathrm d x $$ | 2 |
255 | $$ \displaystyle\int^{0.5}_{0.2} 6x{\cdot}{\left(3+x\right)}^{-2}\, \mathrm d x $$ | 2 |
256 | $$ $$ | 2 |
257 | $$ \displaystyle\int \sin\left(5x\right){\cdot}\sin\left(12x\right)\, \mathrm d x $$ | 2 |
258 | $$ $$ | 2 |
259 | $$ \displaystyle\int^{\pi/2}_{0} \sqrt{1+9{\cdot}{\left(\cos\left(3x\right)\right)}^{2}}\, \mathrm d x $$ | 2 |
260 | $$ \displaystyle\int^{2.71828}_{1} \dfrac{1}{x}\, \mathrm d x $$ | 2 |
261 | $$ $$ | 2 |
262 | $$ \displaystyle\int^{100}_{-50} \ln\left(33333333\right){\cdot}\cos\left(44444\right){\cdot}\tan\left(7777\right){\cdot}x{\cdot}\sqrt{87}\, \mathrm d x $$ | 2 |
263 | $$ \displaystyle\int {\left(2x+4\right)}^{3}\, \mathrm d x $$ | 2 |
264 | $$ \displaystyle\int^{2}_{0} 2x-{x}^{2}\, \mathrm d x $$ | 2 |
265 | $$ \displaystyle\int^{2}_{0} {x}^{3}{\cdot}{\mathrm{e}}^{-x}\, \mathrm d x $$ | 2 |
266 | $$ $$ | 2 |
267 | $$ $$ | 2 |
268 | $$ \displaystyle\int^{2}_{0} 4{x}^{2}-{x}^{4}\, \mathrm d x $$ | 2 |
269 | $$ \displaystyle\int^{\infty}_{0} {x}^{3}{\cdot}{\mathrm{e}}^{-x}\, \mathrm d x $$ | 2 |
270 | $$ $$ | 2 |
271 | $$ \displaystyle\int^{5}_{-1} x+7\, \mathrm d x $$ | 2 |
272 | $$ $$ | 2 |
273 | $$ $$ | 2 |
274 | $$ \displaystyle\int^{1}_{-1} -{x}^{2}+3-2\, \mathrm d x $$ | 2 |
275 | $$ $$ | 2 |
276 | $$ \displaystyle\int^{4}_{0} 2{\cdot}\left(0.5x-\sqrt{x}\right){\cdot}x\, \mathrm d x $$ | 2 |
277 | $$ \displaystyle\int \arctan\left(x\right)\, \mathrm d x $$ | 2 |
278 | $$ \displaystyle\int {\left(\tanh\left(3x\right)\right)}^{n}\, \mathrm d x $$ | 2 |
279 | $$ $$ | 2 |
280 | $$ \displaystyle\int \dfrac{\sin\left(2x\right)}{4-x}\, \mathrm d x $$ | 2 |
281 | $$ \displaystyle\int \sin\left(3x\right){\cdot}\cos\left(4x\right)\, \mathrm d x $$ | 2 |
282 | $$ \displaystyle\int {\left(\sec\left(x\right)\right)}^{2}{\cdot}\tan\left(x\right)\, \mathrm d x $$ | 2 |
283 | $$ \displaystyle\int \dfrac{x}{{\left(\sin\left(x\right)\right)}^{n}}\, \mathrm d x $$ | 2 |
284 | $$ $$ | 2 |
285 | $$ $$ | 2 |
286 | $$ $$ | 2 |
287 | $$ $$ | 2 |
288 | $$ $$ | 2 |
289 | $$ \displaystyle\int^{1}_{-1} {x}^{\frac{1}{2}}+4-4\, \mathrm d x $$ | 2 |
290 | $$ \displaystyle\int \sqrt{x}{\cdot}\ln\left(2x\right)\, \mathrm d x $$ | 2 |
291 | $$ \displaystyle\int \dfrac{{\mathrm{e}}^{\mathrm{e}}{\cdot}x}{{\mathrm{e}}^{x}}+3\, \mathrm d x $$ | 2 |
292 | $$ $$ | 2 |
293 | $$ \displaystyle\int {x}^{\frac{2}{5}}+2\, \mathrm d x $$ | 2 |
294 | $$ $$ | 2 |
295 | $$ \displaystyle\int \dfrac{3x-1}{2{x}^{2}+2x+3}\, \mathrm d x $$ | 2 |
296 | $$ $$ | 2 |
297 | $$ \displaystyle\int^{1}_{0} {\left(1-{x}^{2}\right)}^{2}-{\left(1-\sqrt{x}\right)}^{2}\, \mathrm d x $$ | 2 |
298 | $$ \displaystyle\int {x}^{\frac{2}{5}}+2\, \mathrm d x $$ | 2 |
299 | $$ $$ | 2 |
300 | $$ \displaystyle\int^{2}_{-2} -{x}^{2}+6-2\, \mathrm d x $$ | 2 |