Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
201 | $$ \displaystyle\int \left({x}^{2}+3x-2\right){\cdot}{\left(x+5\right)}^{8}\, \mathrm d x $$ | 2 |
202 | $$ \displaystyle\int \dfrac{1}{{x}^{3}-1}\, \mathrm d x $$ | 2 |
203 | $$ \displaystyle\int \sqrt{10}{\cdot}x-1\, \mathrm d x $$ | 2 |
204 | $$ $$ | 2 |
205 | $$ $$ | 2 |
206 | $$ $$ | 2 |
207 | $$ \displaystyle\int \left({x}^{2}+2x\right){\cdot}\mathrm{e}^{3x}\, \mathrm d x $$ | 2 |
208 | $$ $$ | 2 |
209 | $$ \displaystyle\int^{2\pi}_{0} \sqrt{{\left(\dfrac{3}{2}\right)}^{2}-{\left(x-\dfrac{5}{2}\right)}^{2}}\, \mathrm d x $$ | 2 |
210 | $$ $$ | 2 |
211 | $$ $$ | 2 |
212 | $$ \displaystyle\int^{5}_{1} \sqrt{5}\, \mathrm d x $$ | 2 |
213 | $$ $$ | 2 |
214 | $$ \displaystyle\int^{0}_{1} {x}^{2}\, \mathrm d x $$ | 2 |
215 | $$ \displaystyle\int \dfrac{{p}^{4}}{\ln\left(1-x\right)}\, \mathrm d x $$ | 2 |
216 | $$ \displaystyle\int^{\pi/2}_{0} \cos\left(2x\right){\cdot}\sin\left(x\right){\cdot}\sin\left(x\right)\, \mathrm d x $$ | 2 |
217 | $$ $$ | 2 |
218 | $$ \displaystyle\int \dfrac{1}{-\left(1+{\left(\sin\left(x\right)\right)}^{2}\right){\cdot}x}\, \mathrm d x $$ | 2 |
219 | $$ $$ | 2 |
220 | $$ $$ | 2 |
221 | $$ $$ | 2 |
222 | $$ \displaystyle\int \sqrt{2}-3x\, \mathrm d x $$ | 2 |
223 | $$ $$ | 2 |
224 | $$ \displaystyle\int^{1}_{0} -{x}^{2}+1\, \mathrm d x $$ | 2 |
225 | $$ $$ | 2 |
226 | $$ $$ | 2 |
227 | $$ $$ | 2 |
228 | $$ \displaystyle\int^{3}_{2} \sqrt{1+\dfrac{4}{{x}^{4}}}\, \mathrm d x $$ | 2 |
229 | $$ \displaystyle\int {x}^{n}{\cdot}{\left(\cosh\left(x\right)\right)}^{n}{\cdot}ax\, \mathrm d x $$ | 2 |
230 | $$ \displaystyle\int^{\pi}_{\pi/2} {\left(\csc\left(\dfrac{x}{2}\right)\right)}^{3}\, \mathrm d x $$ | 2 |
231 | $$ \displaystyle\int \sqrt{1+\sin\left(x\right)}\, \mathrm d x $$ | 2 |
232 | $$ \displaystyle\int -3x\, \mathrm d x $$ | 2 |
233 | $$ \displaystyle\int \dfrac{x}{{x}^{3}+1}\, \mathrm d x $$ | 2 |
234 | $$ $$ | 2 |
235 | $$ \displaystyle\int^{4}_{0} \sqrt{1+{\left(\dfrac{-\left(x-\dfrac{5}{2}\right)}{{\left({\left(\dfrac{3}{2}\right)}^{2}-{\left(x-\dfrac{5}{2}\right)}^{2}\right)}^{\frac{1}{2}}}\right)}^{2}}\, \mathrm d x $$ | 2 |
236 | $$ \displaystyle\int {\mathrm{e}}^{-3}{\cdot}x\, \mathrm d x $$ | 2 |
237 | $$ $$ | 2 |
238 | $$ \int^{\pi/6}_{0} \frac{{1}}{{\cos{{\left({x}\right)}}}} \, d\,x $$ | 2 |
239 | $$ $$ | 2 |
240 | $$ \displaystyle\int^{-3}_{-4} \dfrac{\ln\left(x\right)}{x+7}\, \mathrm d x $$ | 2 |
241 | $$ \displaystyle\int^{\infty}_{200} \dfrac{20000}{{\left(x+100\right)}^{3}}\, \mathrm d x $$ | 2 |
242 | $$ $$ | 2 |
243 | $$ $$ | 2 |
244 | $$ $$ | 2 |
245 | $$ \displaystyle\int \sin\left(5x\right){\cdot}\sin\left(12x\right)\, \mathrm d x $$ | 2 |
246 | $$ $$ | 2 |
247 | $$ \displaystyle\int^{2}_{1} x-{\mathrm{e}}^{x}\, \mathrm d x $$ | 2 |
248 | $$ $$ | 2 |
249 | $$ \displaystyle\int 6x{\cdot}{\left(3+x\right)}^{-2}\, \mathrm d x $$ | 2 |
250 | $$ \int \frac{{1}}{{{5}{x}^{{2}}+{3}}} \, d\,x $$ | 2 |