Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
151 | $$ $$ | 2 |
152 | $$ \displaystyle\int^{5/9}_{0} \sqrt{1-\dfrac{81x}{4}}\, \mathrm d x $$ | 2 |
153 | $$ \displaystyle\int {\left(1-xx\right)}^{n}\, \mathrm d x $$ | 2 |
154 | $$ \displaystyle\int \dfrac{1}{\ln\left(1-p\right)}\, \mathrm d x $$ | 2 |
155 | $$ $$ | 2 |
156 | $$ \displaystyle\int \dfrac{1}{\ln\left(1-x\right)}\, \mathrm d x $$ | 2 |
157 | $$ \displaystyle\int \dfrac{1}{{\left({x}^{2}-16\right)}^{\frac{3}{2}}}\, \mathrm d x $$ | 2 |
158 | $$ \displaystyle\int^{\pi}_{0} {\mathrm{e}}^{-x}{\cdot}\cos\left(n\right){\cdot}x\, \mathrm d x $$ | 2 |
159 | $$ \displaystyle\int^{5/9}_{0} \sqrt{1-\dfrac{81}{4}{\cdot}x}\, \mathrm d x $$ | 2 |
160 | $$ \displaystyle\int^{3.3431}_{0} -0.4167{x}^{2}-x+8\, \mathrm d x $$ | 2 |
161 | $$ \displaystyle\int {\mathrm{e}}^{2+6{\cdot}\cos\left(\frac{{\pi}{\cdot}x}{4}\right)}\, \mathrm d x $$ | 2 |
162 | $$ $$ | 2 |
163 | $$ \displaystyle\int \cos\left(3x\right){\cdot}\cos\left(5x\right)\, \mathrm d x $$ | 2 |
164 | $$ $$ | 2 |
165 | $$ $$ | 2 |
166 | $$ \displaystyle\int^{5/9}_{0} \sqrt{1+\dfrac{81}{4}{\cdot}x}\, \mathrm d x $$ | 2 |
167 | $$ \displaystyle\int {\mathrm{e}}^{2+6{\cdot}\cos\left(\frac{{\pi}{\cdot}x}{4}\right)}\, \mathrm d x $$ | 2 |
168 | $$ \displaystyle\int^{4}_{0} x{\cdot}\sin\left(\dfrac{{\pi}{\cdot}x}{4}\right)\, \mathrm d x $$ | 2 |
169 | $$ \displaystyle\int^{1}_{0} \dfrac{x-4}{{x}^{2}-5x+6}\, \mathrm d x $$ | 2 |
170 | $$ \displaystyle\int^{2}_{1} \left(1+4x\right){\cdot}{\mathrm{e}}^{x}\, \mathrm d x $$ | 2 |
171 | $$ \displaystyle\int \sin\left(5\right){\cdot}x{\cdot}\cos\left(2\right){\cdot}x\, \mathrm d x $$ | 2 |
172 | $$ $$ | 2 |
173 | $$ \displaystyle\int \dfrac{7{x}^{2}+7x+18}{{x}^{3}}+{x}^{2}+18\, \mathrm d x $$ | 2 |
174 | $$ $$ | 2 |
175 | $$ \displaystyle\int^{2}_{0} x{\cdot}\left(4-3x\right)\, \mathrm d x $$ | 2 |
176 | $$ $$ | 2 |
177 | $$ \displaystyle\int \dfrac{7{x}^{2}+7x+18}{{x}^{3}+{x}^{2}+6x}\, \mathrm d x $$ | 2 |
178 | $$ \displaystyle\int^{1}_{3} 6{x}^{2}-3{\cdot}\sqrt{x}+4\, \mathrm d x $$ | 2 |
179 | $$ $$ | 2 |
180 | $$ \displaystyle\int \left({x}^{2}+1\right){\cdot}{\mathrm{e}}^{-x}\, \mathrm d x $$ | 2 |
181 | $$ $$ | 2 |
182 | $$ \displaystyle\int \dfrac{\left({x}^{4}+x\right){\cdot}\left(3x-1\right)}{{x}^{2}{\cdot}\sqrt{x}}\, \mathrm d x $$ | 2 |
183 | $$ $$ | 2 |
184 | $$ \displaystyle\int^{11}_{3} \dfrac{1}{{\left(5x-9\right)}^{3}}\, \mathrm d x $$ | 2 |
185 | $$ \displaystyle\int {x}^{5}{\cdot}\sqrt{1+{x}^{2}}\, \mathrm d x $$ | 2 |
186 | $$ $$ | 2 |
187 | $$ \displaystyle\int \sqrt{{x}^{7}+1}\, \mathrm d x $$ | 2 |
188 | $$ \displaystyle\int \dfrac{\sin\left(2x\right)-\cos\left(2x\right)}{{\left(\sin\left(2x\right)+\cos\left(2x\right)\right)}^{2}}\, \mathrm d x $$ | 2 |
189 | $$ \displaystyle\int 2{x}^{4}\, \mathrm d x $$ | 2 |
190 | $$ \displaystyle\int \dfrac{x+1}{\sqrt{3+4x-4{x}^{2}}}\, \mathrm d x $$ | 2 |
191 | $$ \displaystyle\int^{1}_{-1} \dfrac{1}{2+\sin\left(x\right)}\, \mathrm d x $$ | 2 |
192 | $$ \displaystyle\int \dfrac{{x}^{2}-2x-3}{x-1{\cdot}\left({x}^{2}+2x+2\right)}\, \mathrm d x $$ | 2 |
193 | $$ \displaystyle\int \ln\left(2\right){\cdot}{x}^{2}\, \mathrm d x $$ | 2 |
194 | $$ \displaystyle\int^{2}_{0} \mathrm{e}^{x}{\cdot}\sqrt{\mathrm{e}^{x}+4}\, \mathrm d x $$ | 2 |
195 | $$ \displaystyle\int \dfrac{1}{x+5}\, \mathrm d x $$ | 2 |
196 | $$ \displaystyle\int^{0.693147}_{0} \mathrm{e}^{x}{\cdot}\sqrt{\mathrm{e}^{x}+4}\, \mathrm d x $$ | 2 |
197 | $$ \displaystyle\int \cos\left(\cos\left(x\right)\right)\, \mathrm d x $$ | 2 |
198 | $$ \displaystyle\int^{1}_{0} \dfrac{1}{{\left(3-2x\right)}^{2}}\, \mathrm d x $$ | 2 |
199 | $$ \displaystyle\int 984562\, \mathrm d x $$ | 2 |
200 | $$ $$ | 2 |