Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
101 | $$ \displaystyle\int \dfrac{1}{x}\, \mathrm d x $$ | 3 |
102 | $$ \displaystyle\int^{3\pi/2}_{\pi} \left(2x-3\right){\cdot}\sin\left(2x\right)\, \mathrm d x $$ | 3 |
103 | $$ $$ | 3 |
104 | $$ \displaystyle\int x{\cdot}{\left(1-x\right)}^{6}\, \mathrm d x $$ | 3 |
105 | $$ \displaystyle\int^{\pi/2}_{0} {\left(\sin\left(2x\right)\right)}^{2}{\cdot}\cos\left(2x\right)\, \mathrm d x $$ | 3 |
106 | $$ $$ | 3 |
107 | $$ \displaystyle\int^{2}_{0} 3{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 3 |
108 | $$ \displaystyle\int \dfrac{1}{\sqrt{{a}^{2}+{x}^{2}}}\, \mathrm d x $$ | 3 |
109 | $$ \displaystyle\int \sin\left(x\right)\, \mathrm d x $$ | 3 |
110 | $$ \displaystyle\int \cos\left(x\right)\, \mathrm d x $$ | 3 |
111 | $$ \displaystyle\int^{1}_{-1} {x}^{4}-3{x}^{2}+5\, \mathrm d x $$ | 3 |
112 | $$ \displaystyle\int^{\pi/80}_{0} \dfrac{1}{2}{\cdot}0.0000006{\cdot}{\left(40{\cdot}\mathrm{e}^{-15000t}{\cdot}\sin\left(30000t\right)\right)}^{2}\, \mathrm d x $$ | 3 |
113 | $$ $$ | 3 |
114 | $$ \displaystyle\int \dfrac{4x}{\left(x-1\right){\cdot}\left({x}^{2}+x+2\right)}\, \mathrm d x $$ | 3 |
115 | $$ \displaystyle\int \sqrt{x{\cdot}\left(4-x\right)}\, \mathrm d x $$ | 3 |
116 | $$ \displaystyle\int {\left(2{x}^{6}-8x-7\right)}^{-2}\, \mathrm d x $$ | 3 |
117 | $$ \displaystyle\int \sqrt{1+6x+{\left(\dfrac{1}{2{x}^{0.5}}\right)}^{2}}\, \mathrm d x $$ | 2 |
118 | $$ \displaystyle\int \dfrac{2{t}^{3}}{\sqrt{{t}^{4}-8}}\, \mathrm d x $$ | 2 |
119 | $$ $$ | 2 |
120 | $$ \displaystyle\int^{\infty}_{0} \dfrac{\sqrt{x}}{\left(x+1\right){\cdot}\left(x+2\right){\cdot}\left(x+3\right)}\, \mathrm d x $$ | 2 |
121 | $$ \displaystyle\int \dfrac{1}{5}-2x\, \mathrm d x $$ | 2 |
122 | $$ \displaystyle\int^{5}_{4} \dfrac{2{t}^{3}}{\sqrt{{t}^{4}-8}}\, \mathrm d x $$ | 2 |
123 | $$ $$ | 2 |
124 | $$ \displaystyle\int {\left(1+{x}^{3}\right)}^{n}{\cdot}{x}^{4}\, \mathrm d x $$ | 2 |
125 | $$ \displaystyle\int \dfrac{20}{4-{x}^{0.5}}\, \mathrm d x $$ | 2 |
126 | $$ \displaystyle\int \sin\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 2 |
127 | $$ \displaystyle\int \dfrac{2}{3}{\cdot}{x}^{2}{\cdot}\ln\left({x}^{3}\right)\, \mathrm d x $$ | 2 |
128 | $$ \displaystyle\int {\left(1+{x}^{3}\right)}^{2}{\cdot}{x}^{4}\, \mathrm d x $$ | 2 |
129 | $$ \displaystyle\int^{81}_{25} \dfrac{\sqrt{x}}{x-4}\, \mathrm d x $$ | 2 |
130 | $$ $$ | 2 |
131 | $$ $$ | 2 |
132 | $$ \int^{\pi/2}_{-\pi/2} \frac{{1}}{{\cos{{\left(\frac{{x}}{{2}}\right)}}}} \, d\,x $$ | 2 |
133 | $$ \displaystyle\int \dfrac{\cos\left(5x\right)}{{\mathrm{e}}^{x}}\, \mathrm d x $$ | 2 |
134 | $$ \displaystyle\int {\left(\cos\left(x\right)\right)}^{2}\, \mathrm d x $$ | 2 |
135 | $$ \displaystyle\int \dfrac{{x}^{2}+2x+1}{{x}^{3}}\, \mathrm d x $$ | 2 |
136 | $$ \displaystyle\int^{64}_{25} \dfrac{\sqrt{x}}{x-4}\, \mathrm d x $$ | 2 |
137 | $$ \displaystyle\int^{3}_{-6} 3-\dfrac{{x}^{2}}{4}-x\, \mathrm d x $$ | 2 |
138 | $$ $$ | 2 |
139 | $$ \displaystyle\int^{3}_{1} {x}^{3}{\cdot}\sqrt{x+2}\, \mathrm d x $$ | 2 |
140 | $$ $$ | 2 |
141 | $$ \displaystyle\int -{\mathrm{e}}^{x}{\cdot}\sqrt{9{\mathrm{e}}^{2x}+4}\, \mathrm d x $$ | 2 |
142 | $$ $$ | 2 |
143 | $$ \displaystyle\int \dfrac{1}{{\left(\sin\left(x\right)\right)}^{3}}\, \mathrm d x $$ | 2 |
144 | $$ \displaystyle\int \dfrac{7}{x}{\cdot}\sqrt{16{x}^{2}-64}\, \mathrm d x $$ | 2 |
145 | $$ \displaystyle\int \left(x+1\right){\cdot}\sqrt{2-x}\, \mathrm d x $$ | 2 |
146 | $$ $$ | 2 |
147 | $$ \displaystyle\int {x}^{3}{\cdot}{\left(3+4{x}^{3}\right)}^{8}\, \mathrm d x $$ | 2 |
148 | $$ \displaystyle\int \dfrac{-12{x}^{3}}{\ln\left(1-x\right)}\, \mathrm d x $$ | 2 |
149 | $$ \displaystyle\int^{3.25789}_{0} \dfrac{{x}^{4}-10{x}^{2}-2x}{2{x}^{2}+1}\, \mathrm d x $$ | 2 |
150 | $$ \displaystyle\int^{1}_{0} \sqrt{\sqrt{x}-x}\, \mathrm d x $$ | 2 |