Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
1751 | $$ \displaystyle\int^{1}_{0} \sqrt{\dfrac{1+x}{1-x}}\, \mathrm d x $$ | 1 |
1752 | $$ $$ | 1 |
1753 | $$ $$ | 1 |
1754 | $$ $$ | 1 |
1755 | $$ $$ | 1 |
1756 | $$ $$ | 1 |
1757 | $$ $$ | 1 |
1758 | $$ \displaystyle\int^{-\pi/4}_{-\pi/3} \dfrac{-\sin\left(x\right)}{{\left(\cos\left(x\right)\right)}^{2}}\, \mathrm d x $$ | 1 |
1759 | $$ $$ | 1 |
1760 | $$ $$ | 1 |
1761 | $$ $$ | 1 |
1762 | $$ \displaystyle\int^{0}_{-\pi} \dfrac{\sin\left(x\right)}{3+\cos\left(x\right)}\, \mathrm d x $$ | 1 |
1763 | $$ $$ | 1 |
1764 | $$ $$ | 1 |
1765 | $$ $$ | 1 |
1766 | $$ \displaystyle\int^{1}_{-2} 2-{x}^{2}-x\, \mathrm d x $$ | 1 |
1767 | $$ $$ | 1 |
1768 | $$ $$ | 1 |
1769 | $$ $$ | 1 |
1770 | $$ \displaystyle\int x{\cdot}\left(\sqrt{x}-1\right)\, \mathrm d x $$ | 1 |
1771 | $$ $$ | 1 |
1772 | $$ $$ | 1 |
1773 | $$ \displaystyle\int x{\cdot}\ln\left(x\right)\, \mathrm d x $$ | 1 |
1774 | $$ \displaystyle\int \cos\left(x\right){\cdot}\ln\left(x\right)\, \mathrm d x $$ | 1 |
1775 | $$ \displaystyle\int \dfrac{\sqrt{1+{x}^{2}}}{{x}^{2}}\, \mathrm d x $$ | 1 |
1776 | $$ \displaystyle\int x{\cdot}{\left(x-1\right)}^{0.5}\, \mathrm d x $$ | 1 |
1777 | $$ \displaystyle\int {\mathrm{e}}^{4x}\, \mathrm d x $$ | 1 |
1778 | $$ $$ | 1 |
1779 | $$ \displaystyle\int \sin\left(2x\right)\, \mathrm d x $$ | 1 |
1780 | $$ $$ | 1 |
1781 | $$ $$ | 1 |
1782 | $$ \displaystyle\int^{0}_{-\pi} x{\cdot}\left(x-1\right){\cdot}\left(x-3\right)\, \mathrm d x $$ | 1 |
1783 | $$ \displaystyle\int x{\cdot}\sqrt{x-1}\, \mathrm d x $$ | 1 |
1784 | $$ $$ | 1 |
1785 | $$ $$ | 1 |
1786 | $$ $$ | 1 |
1787 | $$ \int^{1}_{0} {2}\pi{x}^{{\frac{{1}}{{3}}}}\sqrt{{{1}+\frac{{1}}{{9}}{x}^{{\frac{{4}}{{3}}}}}} \, d\,x $$ | 1 |
1788 | $$ \displaystyle\int^{3}_{0} x{\cdot}\left(x-1\right){\cdot}\left(x-3\right)\, \mathrm d x $$ | 1 |
1789 | $$ $$ | 1 |
1790 | $$ $$ | 1 |
1791 | $$ $$ | 1 |
1792 | $$ $$ | 1 |
1793 | $$ \displaystyle\int \dfrac{1}{{x}^{2}+2}\, \mathrm d x $$ | 1 |
1794 | $$ $$ | 1 |
1795 | $$ \displaystyle\int^{1}_{0} t{\cdot}{\mathrm{e}}^{t}\, \mathrm d x $$ | 1 |
1796 | $$ $$ | 1 |
1797 | $$ \displaystyle\int \dfrac{1}{\sqrt{{x}^{2}+4}}\, \mathrm d x $$ | 1 |
1798 | $$ $$ | 1 |
1799 | $$ $$ | 1 |
1800 | $$ $$ | 1 |