All the problems and solutions shown below were generated using the Integral Calculator.
ID | Problem | Count |
---|---|---|
1801 | $$ $$ | 1 |
1802 | $$ $$ | 1 |
1803 | $$ $$ | 1 |
1804 | $$ $$ | 1 |
1805 | $$ $$ | 1 |
1806 | $$ $$ | 1 |
1807 | $$ $$ | 1 |
1808 | $$ \displaystyle\int \dfrac{1}{\sqrt{{x}^{2}+4}}\, \mathrm d x $$ | 1 |
1809 | $$ \displaystyle\int \dfrac{x}{\sqrt{{x}^{2}+4}}\, \mathrm d x $$ | 1 |
1810 | $$ \displaystyle\int 4x{\cdot}\cos\left(2-3x\right)\, \mathrm d x $$ | 1 |
1811 | $$ $$ | 1 |
1812 | $$ $$ | 1 |
1813 | $$ $$ | 1 |
1814 | $$ $$ | 1 |
1815 | $$ $$ | 1 |
1816 | $$ $$ | 1 |
1817 | $$ $$ | 1 |
1818 | $$ $$ | 1 |
1819 | $$ $$ | 1 |
1820 | $$ $$ | 1 |
1821 | $$ $$ | 1 |
1822 | $$ $$ | 1 |
1823 | $$ $$ | 1 |
1824 | $$ $$ | 1 |
1825 | $$ $$ | 1 |
1826 | $$ $$ | 1 |
1827 | $$ $$ | 1 |
1828 | $$ \displaystyle\int {\left(\sec\left(x\right)\right)}^{2}\, \mathrm d x $$ | 1 |
1829 | $$ \displaystyle\int \sec\left(x\right){\cdot}\tan\left(x\right)\, \mathrm d x $$ | 1 |
1830 | $$ $$ | 1 |
1831 | $$ $$ | 1 |
1832 | $$ $$ | 1 |
1833 | $$ $$ | 1 |
1834 | $$ $$ | 1 |
1835 | $$ $$ | 1 |
1836 | $$ $$ | 1 |
1837 | $$ $$ | 1 |
1838 | $$ $$ | 1 |
1839 | $$ $$ | 1 |
1840 | $$ $$ | 1 |
1841 | $$ $$ | 1 |
1842 | $$ $$ | 1 |
1843 | $$ $$ | 1 |
1844 | $$ $$ | 1 |
1845 | $$ $$ | 1 |
1846 | $$ $$ | 1 |
1847 | $$ $$ | 1 |
1848 | $$ $$ | 1 |
1849 | $$ $$ | 1 |
1850 | $$ $$ | 1 |