Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
1701 | $$ $$ | 1 |
1702 | $$ $$ | 1 |
1703 | $$ $$ | 1 |
1704 | $$ $$ | 1 |
1705 | $$ $$ | 1 |
1706 | $$ \displaystyle\int 9x{x}^{3}\, \mathrm d x $$ | 1 |
1707 | $$ $$ | 1 |
1708 | $$ $$ | 1 |
1709 | $$ $$ | 1 |
1710 | $$ $$ | 1 |
1711 | $$ $$ | 1 |
1712 | $$ $$ | 1 |
1713 | $$ $$ | 1 |
1714 | $$ \displaystyle\int 6.28\, \mathrm d x $$ | 1 |
1715 | $$ $$ | 1 |
1716 | $$ $$ | 1 |
1717 | $$ $$ | 1 |
1718 | $$ \displaystyle\int \dfrac{{x}^{2}}{x+1}\, \mathrm d x $$ | 1 |
1719 | $$ $$ | 1 |
1720 | $$ $$ | 1 |
1721 | $$ \displaystyle\int {x}^{2}{\cdot}{\mathrm{e}}^{{x}^{3+1}}\, \mathrm d x $$ | 1 |
1722 | $$ $$ | 1 |
1723 | $$ \displaystyle\int \dfrac{{x}^{4}+3{x}^{2}+8}{{x}^{2}}\, \mathrm d x $$ | 1 |
1724 | $$ \displaystyle\int^{45}_{628} 6.28\, \mathrm d x $$ | 1 |
1725 | $$ $$ | 1 |
1726 | $$ $$ | 1 |
1727 | $$ \displaystyle\int \mathrm{e}^{x}{\cdot}\sqrt{\mathrm{e}^{x}+4}\, \mathrm d x $$ | 1 |
1728 | $$ \displaystyle\int^{\infty }_{0} {\mathrm{e}}^{-{x}^{2}}{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 1 |
1729 | $$ \displaystyle\int \dfrac{1}{\sqrt{16-{x}^{2}}}\, \mathrm d x $$ | 1 |
1730 | $$ $$ | 1 |
1731 | $$ \int {2}\pi\frac{{x}^{{1}}}{{3}}{\left(\sqrt{{{1}+\frac{{1}}{{9}}\frac{{x}^{{4}}}{{3}}}}\right)} \, d\,x $$ | 1 |
1732 | $$ $$ | 1 |
1733 | $$ $$ | 1 |
1734 | $$ \displaystyle\int^{2}_{-1} {x}^{2}{\cdot}{\mathrm{e}}^{{x}^{3+1}}\, \mathrm d x $$ | 1 |
1735 | $$ $$ | 1 |
1736 | $$ $$ | 1 |
1737 | $$ $$ | 1 |
1738 | $$ $$ | 1 |
1739 | $$ $$ | 1 |
1740 | $$ $$ | 1 |
1741 | $$ $$ | 1 |
1742 | $$ $$ | 1 |
1743 | $$ \displaystyle\int {x}^{2}{\cdot}{\mathrm{e}}^{{x}^{3}+1}\, \mathrm d x $$ | 1 |
1744 | $$ $$ | 1 |
1745 | $$ \displaystyle\int \left({x}^{5}+2\right){\cdot}5{x}^{4}\, \mathrm d x $$ | 1 |
1746 | $$ $$ | 1 |
1747 | $$ \displaystyle\int^{\infty }_{0} {\mathrm{e}}^{-{x}^{2}}{\cdot}\sin\left(x\right){\cdot}\cos\left(x\right)\, \mathrm d x $$ | 1 |
1748 | $$ $$ | 1 |
1749 | $$ \displaystyle\int^{2}_{-1} {x}^{2}{\cdot}{\mathrm{e}}^{{x}^{3}+1}\, \mathrm d x $$ | 1 |
1750 | $$ $$ | 1 |