Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
1651 | $$ $$ | 1 |
1652 | $$ \displaystyle\int 2x{\cdot}\sin\left({x}^{2}-4\right)\, \mathrm d x $$ | 1 |
1653 | $$ $$ | 1 |
1654 | $$ \displaystyle\int^{3}_{-1} {x}^{2}+2x\, \mathrm d x $$ | 1 |
1655 | $$ $$ | 1 |
1656 | $$ $$ | 1 |
1657 | $$ $$ | 1 |
1658 | $$ \displaystyle\int \dfrac{2{x}^{2}+4}{{\left({x}^{2}-2x+2\right)}^{2}}\, \mathrm d x $$ | 1 |
1659 | $$ $$ | 1 |
1660 | $$ $$ | 1 |
1661 | $$ $$ | 1 |
1662 | $$ $$ | 1 |
1663 | $$ $$ | 1 |
1664 | $$ $$ | 1 |
1665 | $$ \displaystyle\int \dfrac{1}{5x-2}\, \mathrm d x $$ | 1 |
1666 | $$ \displaystyle\int^{0.5}_{0} \dfrac{1}{{x}^{3}{\cdot}{\left(\ln\left(x\right)\right)}^{8}}\, \mathrm d x $$ | 1 |
1667 | $$ \displaystyle\int 4{\cdot}\sin\left(2x\right)-3{\cdot}\cos\left(7x\right)\, \mathrm d x $$ | 1 |
1668 | $$ $$ | 1 |
1669 | $$ \displaystyle\int^{\infty}_{0} \dfrac{{x}^{\frac{-1}{2}}}{x+1}\, \mathrm d x $$ | 1 |
1670 | $$ $$ | 1 |
1671 | $$ $$ | 1 |
1672 | $$ \int^{1}_{0} \sqrt{{2}}-{x}^{{2}} \, d\,x $$ | 1 |
1673 | $$ $$ | 1 |
1674 | $$ \displaystyle\int \dfrac{3{x}^{3}-4x+1}{x-2}\, \mathrm d x $$ | 1 |
1675 | $$ $$ | 1 |
1676 | $$ $$ | 1 |
1677 | $$ $$ | 1 |
1678 | $$ \displaystyle\int {x}^{4}{\cdot}{\left({x}^{5}+15\right)}^{3}\, \mathrm d x $$ | 1 |
1679 | $$ \displaystyle\int^{1}_{-1} \dfrac{\tan\left(x\right)}{1+{x}^{2}+{x}^{4}}\, \mathrm d x $$ | 1 |
1680 | $$ $$ | 1 |
1681 | $$ \displaystyle\int \dfrac{x+1}{{x}^{3}}\, \mathrm d x $$ | 1 |
1682 | $$ $$ | 1 |
1683 | $$ \displaystyle\int^{2}_{1} 3{x}^{2}-2x+2\, \mathrm d x $$ | 1 |
1684 | $$ $$ | 1 |
1685 | $$ $$ | 1 |
1686 | $$ $$ | 1 |
1687 | $$ \displaystyle\int 9x{\cdot}{\left(3x+2\right)}^{3}\, \mathrm d x $$ | 1 |
1688 | $$ $$ | 1 |
1689 | $$ $$ | 1 |
1690 | $$ \displaystyle\int \mathrm{e}^{x}{\cdot}\sqrt{\mathrm{e}^{x}+4}\, \mathrm d x $$ | 1 |
1691 | $$ $$ | 1 |
1692 | $$ $$ | 1 |
1693 | $$ $$ | 1 |
1694 | $$ \displaystyle\int 9x{x}^{3}\, \mathrm d x $$ | 1 |
1695 | $$ \displaystyle\int \cos\left(6x-5\right)\, \mathrm d x $$ | 1 |
1696 | $$ $$ | 1 |
1697 | $$ \displaystyle\int {\mathrm{e}}^{-2x}{\cdot}x\, \mathrm d x $$ | 1 |
1698 | $$ \displaystyle\int^{2}_{0} \dfrac{1}{\sqrt{1+{x}^{2}}}\, \mathrm d x $$ | 1 |
1699 | $$ \displaystyle\int \cos\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 1 |
1700 | $$ $$ | 1 |