Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
1601 | $$ \displaystyle\int \dfrac{4{x}^{2}}{\sqrt{1-12{x}^{3}}}\, \mathrm d x $$ | 1 |
1602 | $$ \displaystyle\int^{2}_{0} \dfrac{2x}{4{x}^{2}+1}\, \mathrm d x $$ | 1 |
1603 | $$ \displaystyle\int {x}^{\frac{5}{2}}+4{x}^{-\frac{1}{3}}+\mathrm{e}{\cdot}{\pi}-\dfrac{1}{\ln\left(2\right)}\, \mathrm d x $$ | 1 |
1604 | $$ $$ | 1 |
1605 | $$ \displaystyle\int \dfrac{{\left(\sqrt{x}-3\right)}^{5}}{2{\cdot}\sqrt{x}}\, \mathrm d x $$ | 1 |
1606 | $$ $$ | 1 |
1607 | $$ \displaystyle\int^{2}_{0} {\mathrm{e}}^{2x}+2{\mathrm{e}}^{x}\, \mathrm d x $$ | 1 |
1608 | $$ $$ | 1 |
1609 | $$ \displaystyle\int^{2}_{0} {x}^{2}-8\, \mathrm d x $$ | 1 |
1610 | $$ $$ | 1 |
1611 | $$ $$ | 1 |
1612 | $$ \displaystyle\int^{2}_{0} {\pi}{\cdot}\left({\mathrm{e}}^{2x}+2{\mathrm{e}}^{x}\right)\, \mathrm d x $$ | 1 |
1613 | $$ \displaystyle\int {x}^{3}-2{x}^{2}+7x+5\, \mathrm d x $$ | 1 |
1614 | $$ \displaystyle\int {x}^{n}{\cdot}\ln\left(x\right)\, \mathrm d x $$ | 1 |
1615 | $$ \displaystyle\int -4{x}^{-\frac{1}{3}}\, \mathrm d x $$ | 1 |
1616 | $$ $$ | 1 |
1617 | $$ \displaystyle\int \sqrt{3-2}{\cdot}x{x}^{2}\, \mathrm d x $$ | 1 |
1618 | $$ $$ | 1 |
1619 | $$ $$ | 1 |
1620 | $$ \displaystyle\int \dfrac{1}{\cosh\left(x\right)}\, \mathrm d x $$ | 1 |
1621 | $$ $$ | 1 |
1622 | $$ \displaystyle\int^{0}_{2\pi} 5+5{\cdot}\cos\left(x\right)\, \mathrm d x $$ | 1 |
1623 | $$ $$ | 1 |
1624 | $$ \displaystyle\int \dfrac{1}{{x}^{3}{\cdot}\ln\left(x\right)}\, \mathrm d x $$ | 1 |
1625 | $$ \displaystyle\int {x}^{x}\, \mathrm d x $$ | 1 |
1626 | $$ $$ | 1 |
1627 | $$ \displaystyle\int \left(x-1\right){\cdot}\cos\left(2\right){\cdot}x\, \mathrm d x $$ | 1 |
1628 | $$ $$ | 1 |
1629 | $$ \displaystyle\int 5+5{\cdot}\cos\left(x\right)\, \mathrm d x $$ | 1 |
1630 | $$ $$ | 1 |
1631 | $$ $$ | 1 |
1632 | $$ $$ | 1 |
1633 | $$ \displaystyle\int {\left({x}^{5}+{x}^{2}\right)}^{9}\, \mathrm d x $$ | 1 |
1634 | $$ \displaystyle\int \dfrac{1}{{x}^{3}{\cdot}{\left(\ln\left(x\right)\right)}^{2}}\, \mathrm d x $$ | 1 |
1635 | $$ $$ | 1 |
1636 | $$ $$ | 1 |
1637 | $$ \displaystyle\int^{\pi/3}_{0} \cos\left(x\right){\cdot}{\mathrm{e}}^{\sin\left(x\right)}\, \mathrm d x $$ | 1 |
1638 | $$ $$ | 1 |
1639 | $$ $$ | 1 |
1640 | $$ $$ | 1 |
1641 | $$ \displaystyle\int {\mathrm{e}}^{-x}{\cdot}\cos\left(x\right)\, \mathrm d x $$ | 1 |
1642 | $$ $$ | 1 |
1643 | $$ \displaystyle\int^{1}_{0} \sqrt{1-{x}^{2}}\, \mathrm d x $$ | 1 |
1644 | $$ \displaystyle\int \dfrac{2}{3}{\cdot}x\, \mathrm d x $$ | 1 |
1645 | $$ $$ | 1 |
1646 | $$ $$ | 1 |
1647 | $$ \displaystyle\int \dfrac{1}{{x}^{2}}{\cdot}\sin\left(\dfrac{1}{x}\right)\, \mathrm d x $$ | 1 |
1648 | $$ $$ | 1 |
1649 | $$ \displaystyle\int \dfrac{\ln\left(x+2\right)}{\ln\left(10\right)}\, \mathrm d x $$ | 1 |
1650 | $$ $$ | 1 |