Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
1551 | $$ \displaystyle\int^{1}_{0} 4\, \mathrm d x $$ | 1 |
1552 | $$ $$ | 1 |
1553 | $$ \displaystyle\int x{\cdot}\ln\left(x\right)\, \mathrm d x $$ | 1 |
1554 | $$ $$ | 1 |
1555 | $$ $$ | 1 |
1556 | $$ $$ | 1 |
1557 | $$ \displaystyle\int^{9}_{1} \sqrt{x}\, \mathrm d x $$ | 1 |
1558 | $$ $$ | 1 |
1559 | $$ $$ | 1 |
1560 | $$ $$ | 1 |
1561 | $$ $$ | 1 |
1562 | $$ \displaystyle\int \dfrac{4x+5}{\left(x-1\right){\cdot}{\left(x+2\right)}^{2}}\, \mathrm d x $$ | 1 |
1563 | $$ \displaystyle\int^{1}_{0} {\left(x+\sqrt(3){\dfrac{1}{2}{\cdot}x-1}+1\right)}^{2}\, \mathrm d x $$ | 1 |
1564 | $$ $$ | 1 |
1565 | $$ $$ | 1 |
1566 | $$ $$ | 1 |
1567 | $$ $$ | 1 |
1568 | $$ \displaystyle\int^{1}_{0} 3{x}^{2}{\cdot}{\mathrm{e}}^{-x}\, \mathrm d x $$ | 1 |
1569 | $$ $$ | 1 |
1570 | $$ $$ | 1 |
1571 | $$ $$ | 1 |
1572 | $$ \displaystyle\int \dfrac{3{\cdot}\left(1-2{\cdot}\sin\left(x\right)\right)}{2{\cdot}\cos\left(x\right)+x}\, \mathrm d x $$ | 1 |
1573 | $$ $$ | 1 |
1574 | $$ \displaystyle\int^{2}_{1/2} {\left(a-x\right)}^{2}\, \mathrm d x $$ | 1 |
1575 | $$ $$ | 1 |
1576 | $$ $$ | 1 |
1577 | $$ \displaystyle\int {\left(\sin\left(2\right){\cdot}x\right)}^{12}{\cdot}\cos\left(2\right){\cdot}x\, \mathrm d x $$ | 1 |
1578 | $$ $$ | 1 |
1579 | $$ $$ | 1 |
1580 | $$ \displaystyle\int^{\infty}_{0} 1000{\mathrm{e}}^{-200x}{\cdot}\left(1-\cos\left(400\right){\cdot}x\right)\, \mathrm d x $$ | 1 |
1581 | $$ $$ | 1 |
1582 | $$ \displaystyle\int^{2.05136}_{0} {\left(2.61793+1.16771{\cdot}\sin\left(1.20382x-1.86384\right)\right)}^{2}\, \mathrm d x $$ | 1 |
1583 | $$ $$ | 1 |
1584 | $$ \displaystyle\int {\mathrm{e}}^{{x}^{14}}\, \mathrm d x $$ | 1 |
1585 | $$ $$ | 1 |
1586 | $$ \displaystyle\int 2{x}^{2}-\dfrac{3}{4}{\cdot}x\, \mathrm d x $$ | 1 |
1587 | $$ \displaystyle\int^{6}_{0} {\mathrm{e}}^{\frac{3-2x}{3}}\, \mathrm d x $$ | 1 |
1588 | $$ \displaystyle\int {x}^{13}{\cdot}{\mathrm{e}}^{{x}^{14}}\, \mathrm d x $$ | 1 |
1589 | $$ \displaystyle\int \dfrac{1}{1-x}\, \mathrm d x $$ | 1 |
1590 | $$ \displaystyle\int^{\infty}_{-\infty} {\mathrm{e}}^{\frac{-{x}^{2}}{2}}\, \mathrm d x $$ | 1 |
1591 | $$ \displaystyle\int \dfrac{1}{a-x}\, \mathrm d x $$ | 1 |
1592 | $$ \displaystyle\int^{1}_{0} 2x{\cdot}\left(1-\sqrt{x}\right)\, \mathrm d x $$ | 1 |
1593 | $$ $$ | 1 |
1594 | $$ $$ | 1 |
1595 | $$ \displaystyle\int^{1}_{0} \sqrt{x}\, \mathrm d x $$ | 1 |
1596 | $$ \displaystyle\int \dfrac{1}{\sqrt{{\mathrm{e}}^{-2x}-9}}\, \mathrm d x $$ | 1 |
1597 | $$ \displaystyle\int^{3}_{2} {x}^{2}+3x-1\, \mathrm d x $$ | 1 |
1598 | $$ \displaystyle\int 4{\cdot}\sqrt{\tan\left(\color{orangered}{\square}\right)}\, \mathrm d x $$ | 1 |
1599 | $$ \displaystyle\int \dfrac{\sin\left(2x\right)-\cos\left(2x\right)}{{\left(\sin\left(2x\right)+\cos\left(2x\right)\right)}^{2}}\, \mathrm d x $$ | 1 |
1600 | $$ \displaystyle\int {x}^{\frac{5}{2}}+4{x}^{-\frac{1}{3}}+\mathrm{e}{\cdot}{\pi}-\dfrac{1}{\ln\left(2\right)}\, \mathrm d x $$ | 1 |