Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 1501 | $$ \displaystyle\int \ln\left(\sin\left(x\sqrtight)\sqrtight)\, \mathsqrtm d x $$ | 2 |
| 1502 | $$ \displaystyle\int \sqrt{x}\, \mathrm d x $$ | 2 |
| 1503 | $$ \displaystyle\int^{\infty}_{-\infty} \dfrac{1}{{x}^{2}+2x+5}\, \mathrm d x $$ | 2 |
| 1504 | $$ \displaystyle\int \dfrac{1}{{x}^{5}}\, \mathrm d x $$ | 2 |
| 1505 | $$ \displaystyle\int \dfrac{x}{{\left(\sqrt{x}\right)}^{2}+4}\, \mathrm d x $$ | 2 |
| 1506 | $$ \displaystyle\int \dfrac{x}{{\left({x}^{2}+4\right)}^{\frac{1}{2}}}\, \mathrm d x $$ | 2 |
| 1507 | $$ \displaystyle\int^{0}_{-\infty} {\mathrm{e}}^{3x}\, \mathrm d x $$ | 2 |
| 1508 | $$ $$ | 2 |
| 1509 | $$ \displaystyle\int \tan\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 2 |
| 1510 | $$ x $$ | 2 |
| 1511 | $$ x $$ | 2 |
| 1512 | $$ \displaystyle\int \dfrac{1}{{x}^{3}}\, \mathrm d x $$ | 2 |
| 1513 | $$ \displaystyle\int^{\pi}_{-\pi} \sin\left(2\right){\cdot}x{\cdot}\cos\left(x\right)\, \mathrm d x $$ | 2 |
| 1514 | $$ \displaystyle\int^{\pi}_{-\pi} \sin\left(2\right){\cdot}x{\cdot}\cos\left(2\right){\cdot}x\, \mathrm d x $$ | 2 |
| 1515 | $$ $$ | 2 |
| 1516 | $$ $$ | 2 |
| 1517 | $$ $$ | 2 |
| 1518 | $$ \displaystyle\int^{10}_{0} {x}^{8}-126\, \mathrm d x $$ | 2 |
| 1519 | $$ \displaystyle\int \dfrac{\sqrt{4-{x}^{2}}}{x}\, \mathrm d x $$ | 2 |
| 1520 | $$ \displaystyle\int {\left({x}^{2}-1\right)}^{\frac{1}{2}}\, \mathrm d x $$ | 2 |
| 1521 | $$ \displaystyle\int \dfrac{{x}^{2}}{2}\, \mathrm d x $$ | 2 |
| 1522 | $$ \displaystyle\int {\left({x}^{2}+2\right)}^{\frac{3}{2}}\, \mathrm d x $$ | 2 |
| 1523 | $$ \displaystyle\int^{9}_{1} \dfrac{5}{\sqrt{x}{\cdot}{\left(\sqrt{x}+1\right)}^{2}}\, \mathrm d x $$ | 2 |
| 1524 | $$ \displaystyle\int \left(2x+1\right){\cdot}\sqrt{{x}^{2}+x+1}\, \mathrm d x $$ | 2 |
| 1525 | $$ \displaystyle\int \dfrac{{x}^{2}-2}{{x}^{4}+4}\, \mathrm d x $$ | 2 |
| 1526 | $$ \displaystyle\int \dfrac{1}{\sqrt{x{\cdot}\left(1-2x\right)}}\, \mathrm d x $$ | 2 |
| 1527 | $$ \displaystyle\int^{0}_{1} \dfrac{1}{2+{x}^{2}}\, \mathrm d x $$ | 2 |
| 1528 | $$ \displaystyle\int^{9}_{4} \dfrac{{\left({x}^{\frac{1}{2}}+3\right)}^{2}}{2{x}^{\frac{1}{2}}}\, \mathrm d x $$ | 2 |
| 1529 | $$ \displaystyle\int \sqrt{25}-{x}^{2}\, \mathrm d x $$ | 2 |
| 1530 | $$ \displaystyle\int {\left(25-{x}^{2}\right)}^{\frac{1}{2}}\, \mathrm d x $$ | 2 |
| 1531 | $$ \displaystyle\int \cos\left(-7r\right)\, \mathrm d x $$ | 2 |
| 1532 | $$ \displaystyle\int \sin\left(-7x\right)\, \mathrm d x $$ | 2 |
| 1533 | $$ \displaystyle\int 47x{\cdot}{\left(\cos\left(x\right)\right)}^{2}\, \mathrm d x $$ | 2 |
| 1534 | $$ \displaystyle\int \dfrac{{x}^{3}}{2x-1}\, \mathrm d x $$ | 2 |
| 1535 | $$ \displaystyle\int {\left(\sin\left(5x\right)\right)}^{2}\, \mathrm d x $$ | 2 |
| 1536 | $$ $$ | 2 |
| 1537 | $$ \displaystyle\int \dfrac{{\mathrm{e}}^{x}}{{\mathrm{e}}^{x}}\, \mathrm d x $$ | 2 |
| 1538 | $$ \displaystyle\int 10{\cdot}\sqrt{\sin\left(x\right)}\, \mathrm d x $$ | 2 |
| 1539 | $$ $$ | 2 |
| 1540 | $$ \displaystyle\int {\mathrm{e}}^{-x}{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 2 |
| 1541 | $$ $$ | 2 |
| 1542 | $$ \displaystyle\int \dfrac{{x}^{2}}{{x}^{4}+1}\, \mathrm d x $$ | 2 |
| 1543 | $$ \displaystyle\int^{6}_{0} 3{x}^{2}-6x-3\, \mathrm d x $$ | 2 |
| 1544 | $$ \displaystyle\int^{6}_{0} 3{x}^{2}+6x-3\, \mathrm d x $$ | 2 |
| 1545 | $$ \displaystyle\int^{6}_{0} 3{x}^{2}+6x+3\, \mathrm d x $$ | 2 |
| 1546 | $$ \displaystyle\int {x}^{2}{\cdot}\ln\left(1+x\right)\, \mathrm d x $$ | 2 |
| 1547 | $$ \displaystyle\int^{10}_{0} 3{x}^{2}-2x+1\, \mathrm d x $$ | 2 |
| 1548 | $$ \displaystyle\int^{5}_{0} -{x}^{3}+3{x}^{2}-2x+6\, \mathrm d x $$ | 2 |
| 1549 | $$ $$ | 2 |
| 1550 | $$ \displaystyle\int \dfrac{8{\cdot}\left(x-1\right)}{\sqrt{{\left(2x-1\right)}^{3}}}\, \mathrm d x $$ | 2 |