Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
1501 | $$ \displaystyle\int^{40}_{0} 3.39{\cdot}\cos\left(0.25x+2.28\right)+8.17\, \mathrm d x $$ | 1 |
1502 | $$ $$ | 1 |
1503 | $$ $$ | 1 |
1504 | $$ $$ | 1 |
1505 | $$ $$ | 1 |
1506 | $$ $$ | 1 |
1507 | $$ \int {\left(\sqrt{{\sin{{\left({x}\right)}}}}+{\cos{{\left({x}\right)}}}^{{2}}\right)} \, d\,x $$ | 1 |
1508 | $$ $$ | 1 |
1509 | $$ $$ | 1 |
1510 | $$ $$ | 1 |
1511 | $$ $$ | 1 |
1512 | $$ $$ | 1 |
1513 | $$ \displaystyle\int^{2}_{1} \dfrac{2{\pi}}{3}{\cdot}\left({x}^{4}+2{x}^{2}+2\right){\cdot}{\left({x}^{2}+2\right)}^{\frac{1}{2}}\, \mathrm d x $$ | 1 |
1514 | $$ $$ | 1 |
1515 | $$ \displaystyle\int 4x{\cdot}\cos\left(2-3x\right)\, \mathrm d x $$ | 1 |
1516 | $$ $$ | 1 |
1517 | $$ $$ | 1 |
1518 | $$ \displaystyle\int^{2}_{1} \dfrac{2{\pi}}{3}{\cdot}\left({x}^{2}+2\right){\cdot}{\left({x}^{2}+2\right)}^{\frac{1}{2}}{\cdot}\left(1+{x}^{2}\right)\, \mathrm d x $$ | 1 |
1519 | $$ $$ | 1 |
1520 | $$ $$ | 1 |
1521 | $$ $$ | 1 |
1522 | $$ $$ | 1 |
1523 | $$ \displaystyle\int \dfrac{24}{49{\cdot}\left(2x+1\right)}\, \mathrm d x $$ | 1 |
1524 | $$ $$ | 1 |
1525 | $$ $$ | 1 |
1526 | $$ \displaystyle\int {\mathrm{e}}^{2x}{\cdot}\cos\left(3\right){\cdot}x\, \mathrm d x $$ | 1 |
1527 | $$ $$ | 1 |
1528 | $$ $$ | 1 |
1529 | $$ $$ | 1 |
1530 | $$ \displaystyle\int {x}^{9}{\cdot}\sqrt{{x}^{5}-5}\, \mathrm d x $$ | 1 |
1531 | $$ \displaystyle\int \dfrac{1}{{\pi}}{\cdot}\left(\dfrac{t}{{\pi}}+1\right){\cdot}\cos\left(nt\right)\, \mathrm d x $$ | 1 |
1532 | $$ $$ | 1 |
1533 | $$ $$ | 1 |
1534 | $$ \displaystyle\int 2x{\cdot}\sqrt{x+2}\, \mathrm d x $$ | 1 |
1535 | $$ $$ | 1 |
1536 | $$ $$ | 1 |
1537 | $$ $$ | 1 |
1538 | $$ \displaystyle\int 2{x}^{2}-\dfrac{1}{2}{\cdot}x-15\, \mathrm d x $$ | 1 |
1539 | $$ $$ | 1 |
1540 | $$ $$ | 1 |
1541 | $$ $$ | 1 |
1542 | $$ $$ | 1 |
1543 | $$ $$ | 1 |
1544 | $$ \displaystyle\int \cos\left(\dfrac{{\pi}{\cdot}{x}^{2}}{240}\right)\, \mathrm d x $$ | 1 |
1545 | $$ \displaystyle\int \sin\left(\sqrt{x}\right)\, \mathrm d x $$ | 1 |
1546 | $$ $$ | 1 |
1547 | $$ $$ | 1 |
1548 | $$ $$ | 1 |
1549 | $$ $$ | 1 |
1550 | $$ $$ | 1 |