Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
1451 | $$ $$ | 1 |
1452 | $$ \displaystyle\int^{2.71}_{1} x\, \mathrm d x $$ | 1 |
1453 | $$ $$ | 1 |
1454 | $$ \displaystyle\int^{4}_{-4} \left(2-x\right){\cdot}\cos\left(\dfrac{n{\cdot}{\pi}{\cdot}x}{4}\right)\, \mathrm d x $$ | 1 |
1455 | $$ $$ | 1 |
1456 | $$ $$ | 1 |
1457 | $$ $$ | 1 |
1458 | $$ \displaystyle\int \dfrac{{x}^{2}+2x+3}{\sqrt{4x-{x}^{2}}}\, \mathrm d x $$ | 1 |
1459 | $$ $$ | 1 |
1460 | $$ $$ | 1 |
1461 | $$ $$ | 1 |
1462 | $$ $$ | 1 |
1463 | $$ $$ | 1 |
1464 | $$ $$ | 1 |
1465 | $$ $$ | 1 |
1466 | $$ \displaystyle\int^{2}_{0} {x}^{2}{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 1 |
1467 | $$ $$ | 1 |
1468 | $$ $$ | 1 |
1469 | $$ $$ | 1 |
1470 | $$ \int^{-5}_{5} \sqrt{{25}}-{x}^{{2}} \, d\,x $$ | 1 |
1471 | $$ \displaystyle\int^{2.69}_{1} x\, \mathrm d x $$ | 1 |
1472 | $$ $$ | 1 |
1473 | $$ $$ | 1 |
1474 | $$ $$ | 1 |
1475 | $$ $$ | 1 |
1476 | $$ \displaystyle\int^{1}_{0} \dfrac{\sqrt{1-{x}^{2}}{\cdot}\left(2{x}^{2}+1\right)}{3}\, \mathrm d x $$ | 1 |
1477 | $$ \displaystyle\int \dfrac{1}{{\left(\tan\left(x\right)\right)}^{2}}\, \mathrm d x $$ | 1 |
1478 | $$ $$ | 1 |
1479 | $$ $$ | 1 |
1480 | $$ $$ | 1 |
1481 | $$ $$ | 1 |
1482 | $$ \displaystyle\int {\mathrm{e}}^{-x}\, \mathrm d x $$ | 1 |
1483 | $$ $$ | 1 |
1484 | $$ \int {\ln{{\left({2}{x}+{1}\right)}}} \, d\,x $$ | 1 |
1485 | $$ $$ | 1 |
1486 | $$ $$ | 1 |
1487 | $$ $$ | 1 |
1488 | $$ $$ | 1 |
1489 | $$ \displaystyle\int {\mathrm{e}}^{-2x}\, \mathrm d x $$ | 1 |
1490 | $$ $$ | 1 |
1491 | $$ $$ | 1 |
1492 | $$ \displaystyle\int^{0}_{-\pi} {2}^{2}-{\left(2-2{\cdot}\sin\left(x\right)\right)}^{2}\, \mathrm d x $$ | 1 |
1493 | $$ \int {\left(\sqrt{{\sin{{\left({x}+{\cos{{\left({x}\right)}}}^{{2}}\right)}}}}\right)} \, d\,x $$ | 1 |
1494 | $$ $$ | 1 |
1495 | $$ $$ | 1 |
1496 | $$ \displaystyle\int 3{x}^{-2}+4{x}^{3}+5x\, \mathrm d x $$ | 1 |
1497 | $$ $$ | 1 |
1498 | $$ $$ | 1 |
1499 | $$ \displaystyle\int^{2.718}_{1} x\, \mathrm d x $$ | 1 |
1500 | $$ \displaystyle\int^{\pi}_{0} {2}^{2}-{\left(2-2{\cdot}\sin\left(x\right)\right)}^{2}\, \mathrm d x $$ | 1 |