Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
51 | $$ \displaystyle\int \sin\left(x\right)\, \mathrm d x $$ | 3 |
52 | $$ \displaystyle\int \sqrt{x}{\cdot}\ln\left(x\right)\, \mathrm d x $$ | 3 |
53 | $$ \displaystyle\int^{1}_{-1} {x}^{4}-3{x}^{2}+5\, \mathrm d x $$ | 3 |
54 | $$ \displaystyle\int 1\, \mathrm d x $$ | 3 |
55 | $$ $$ | 3 |
56 | $$ \displaystyle\int^{1}_{-1} {\mathrm{e}}^{x}-1\, \mathrm d x $$ | 3 |
57 | $$ \displaystyle\int^{e}_{1} x{\cdot}\ln\left(x\right)\, \mathrm d x $$ | 3 |
58 | $$ $$ | 3 |
59 | $$ $$ | 3 |
60 | $$ $$ | 3 |
61 | $$ \displaystyle\int \dfrac{1}{x}\, \mathrm d x $$ | 3 |
62 | $$ $$ | 3 |
63 | $$ \displaystyle\int {\left(2{x}^{2}-1\right)}^{5}\, \mathrm d x $$ | 3 |
64 | $$ $$ | 3 |
65 | $$ \displaystyle\int^{2}_{0} 3{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 3 |
66 | $$ $$ | 3 |
67 | $$ \displaystyle\int^{\pi/2}_{0} {\left(\sin\left(2x\right)\right)}^{2}{\cdot}\cos\left(2x\right)\, \mathrm d x $$ | 3 |
68 | $$ \displaystyle\int \sqrt{x{\cdot}\left(4-x\right)}\, \mathrm d x $$ | 3 |
69 | $$ \displaystyle\int \sin\left(x\right)\, \mathrm d x $$ | 3 |
70 | $$ \displaystyle\int \dfrac{{x}^{2}}{{x}^{3}+5}\, \mathrm d x $$ | 3 |
71 | $$ \displaystyle\int x\, \mathrm d x $$ | 3 |
72 | $$ \displaystyle\int {x}^{3}{\cdot}\sqrt{1-{x}^{2}}\, \mathrm d x $$ | 3 |
73 | $$ \displaystyle\int \cos\left(x\right)\, \mathrm d x $$ | 3 |
74 | $$ $$ | 3 |
75 | $$ $$ | 3 |
76 | $$ \displaystyle\int 2x\, \mathrm d x $$ | 3 |
77 | $$ $$ | 3 |
78 | $$ \int {10}{x}^{{3}}-{5}\frac{{x}}{\sqrt{{{x}^{{4}}-{x}^{{2}}+{6}}}} \, d\,x $$ | 3 |
79 | $$ \displaystyle\int 3{x}^{2}+x+1\, \mathrm d x $$ | 3 |
80 | $$ \displaystyle\int^{\pi/80}_{0} \dfrac{1}{2}{\cdot}0.0000006{\cdot}{\left(40{\cdot}\mathrm{e}^{-15000t}{\cdot}\sin\left(30000t\right)\right)}^{2}\, \mathrm d x $$ | 3 |
81 | $$ $$ | 3 |
82 | $$ \displaystyle\int \dfrac{\cos\left(x\right)}{\sin\left(x\right){\cdot}\left(2+\sin\left(x\right)\right)}\, \mathrm d x $$ | 3 |
83 | $$ $$ | 3 |
84 | $$ \displaystyle\int \sqrt{{\left(\dfrac{3}{2}\right)}^{2}-{\left(x-\dfrac{5}{2}\right)}^{2}}\, \mathrm d x $$ | 3 |
85 | $$ \displaystyle\int x{\cdot}{\left(1-x\right)}^{6}\, \mathrm d x $$ | 3 |
86 | $$ $$ | 3 |
87 | $$ $$ | 3 |
88 | $$ $$ | 3 |
89 | $$ $$ | 3 |
90 | $$ $$ | 3 |
91 | $$ $$ | 3 |
92 | $$ $$ | 3 |
93 | $$ \displaystyle\int \ln\left(2\right){\cdot}x\, \mathrm d x $$ | 3 |
94 | $$ \displaystyle\int \sqrt{1}-{x}^{3}\, \mathrm d x $$ | 3 |
95 | $$ \displaystyle\int^{\infty}_{-1} {x}^{2}{\cdot}{\mathrm{e}}^{-{x}^{3}}\, \mathrm d x $$ | 3 |
96 | $$ \displaystyle\int \cos\left(2x\right){\cdot}\cos\left(2x\right)\, \mathrm d x $$ | 3 |
97 | $$ \displaystyle\int {\left(2x-3\right)}^{4}\, \mathrm d x $$ | 3 |
98 | $$ $$ | 3 |
99 | $$ $$ | 3 |
100 | $$ \displaystyle\int x{\cdot}{\left(\sin\left(x\right)\right)}^{-1}\, \mathrm d x $$ | 3 |