Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
701 | $$ $$ | 1 |
702 | $$ \displaystyle\int^{201.48}_{0} \dfrac{1}{2{\pi}}{\cdot}3.88{\cdot}\sin\left(x-23.72\right)+89.381{\mathrm{e}}^{\frac{-x}{25.21}}\, \mathrm d x $$ | 1 |
703 | $$ \int {10}{x}^{{3}}-{5}{x}\sqrt{{x}}^{{4}}-{x}^{{2}}+{6} \, d\,x $$ | 1 |
704 | $$ \displaystyle\int {\mathrm{e}}^{x}-{\mathrm{e}}^{-3x}\, \mathrm d x $$ | 1 |
705 | $$ $$ | 1 |
706 | $$ $$ | 1 |
707 | $$ \int \frac{{{5}+{2}{x}}}{{{5}-{x}}} \, d\,x $$ | 1 |
708 | $$ $$ | 1 |
709 | $$ \int \frac{{1}}{\sqrt{{{x}^{{2}}-{2}}}} \, d\,x $$ | 1 |
710 | $$ \displaystyle\int {\mathrm{e}}^{x}-{\mathrm{e}}^{-2x}\, \mathrm d x $$ | 1 |
711 | $$ \displaystyle\int^{3.3431}_{0} -0.4167-x+8\, \mathrm d x $$ | 1 |
712 | $$ \int \frac{{{4}+{2}{x}}}{{{4}-{x}}} \, d\,x $$ | 1 |
713 | $$ $$ | 1 |
714 | $$ $$ | 1 |
715 | $$ $$ | 1 |
716 | $$ $$ | 1 |
717 | $$ \int {\left({10}{\cos{{\left({5}{x}\right)}}}-{2}{\sin{{\left({4}{x}\right)}}}\right)} \, d\,x $$ | 1 |
718 | $$ $$ | 1 |
719 | $$ \displaystyle\int {\mathrm{e}}^{2x}+\dfrac{1}{x}\, \mathrm d x $$ | 1 |
720 | $$ \displaystyle\int^{4}_{2} \dfrac{1}{x}\, \mathrm d x $$ | 1 |
721 | $$ $$ | 1 |
722 | $$ $$ | 1 |
723 | $$ $$ | 1 |
724 | $$ \int {x}^{{3}}-{3}{x}+\frac{{2}}{{{x}^{{3}}+{6}}}{\left({x}^{{2}}-{3}{x}+{2}\right)} \, d\,x $$ | 1 |
725 | $$ $$ | 1 |
726 | $$ $$ | 1 |
727 | $$ \int^{0*00125}_{0} \frac{{\frac{{1}}{{10}}+{2}{x}}}{{\frac{{1}}{{10}}-{x}}} \, d\,x $$ | 1 |
728 | $$ $$ | 1 |
729 | $$ $$ | 1 |
730 | $$ $$ | 1 |
731 | $$ \int^{125/10000}_{0} \frac{{\frac{{1}}{{10}}+{2}{x}}}{{\frac{{1}}{{10}}-{x}}} \, d\,x $$ | 1 |
732 | $$ $$ | 1 |
733 | $$ $$ | 1 |
734 | $$ $$ | 1 |
735 | $$ $$ | 1 |
736 | $$ $$ | 1 |
737 | $$ $$ | 1 |
738 | $$ $$ | 1 |
739 | $$ $$ | 1 |
740 | $$ \int \frac{{\sin{{\left({x}\right)}}}}{{x}} \, d\,x $$ | 1 |
741 | $$ $$ | 1 |
742 | $$ \int \frac{{\frac{{1}}{{10}}+{2}{x}}}{{\frac{{1}}{{10}}-{x}}} \, d\,x $$ | 1 |
743 | $$ $$ | 1 |
744 | $$ \displaystyle\int^{2}_{0} {\pi}{\cdot}{\left(\dfrac{1}{x+1}\right)}^{2}\, \mathrm d x $$ | 1 |
745 | $$ \displaystyle\int {x}^{2}{\cdot}\sqrt{5x-3}\, \mathrm d x $$ | 1 |
746 | $$ $$ | 1 |
747 | $$ $$ | 1 |
748 | $$ $$ | 1 |
749 | $$ $$ | 1 |
750 | $$ $$ | 1 |