Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
651 | $$ $$ | 1 |
652 | $$ $$ | 1 |
653 | $$ $$ | 1 |
654 | $$ \displaystyle\int \dfrac{{x}^{2}-446}{{x}^{3}}\, \mathrm d x $$ | 1 |
655 | $$ $$ | 1 |
656 | $$ \displaystyle\int {x}^{3}{\cdot}\sqrt{81+{x}^{2}}\, \mathrm d x $$ | 1 |
657 | $$ $$ | 1 |
658 | $$ $$ | 1 |
659 | $$ \displaystyle\int {\mathrm{e}}^{x}{\cdot}\sin\left(2x\right)\, \mathrm d x $$ | 1 |
660 | $$ $$ | 1 |
661 | $$ $$ | 1 |
662 | $$ $$ | 1 |
663 | $$ \displaystyle\int \dfrac{\ln\left({x}^{2}\right)}{x}\, \mathrm d x $$ | 1 |
664 | $$ $$ | 1 |
665 | $$ $$ | 1 |
666 | $$ $$ | 1 |
667 | $$ \displaystyle\int^{2}_{1} -{x}^{2}+3x-2\, \mathrm d x $$ | 1 |
668 | $$ $$ | 1 |
669 | $$ $$ | 1 |
670 | $$ \displaystyle\int \cos\left({x}^{2}\right)\, \mathrm d x $$ | 1 |
671 | $$ \displaystyle\int^{1.386294361}_{0} {\mathrm{e}}^{x}-{\mathrm{e}}^{-4}{\cdot}x\, \mathrm d x $$ | 1 |
672 | $$ $$ | 1 |
673 | $$ $$ | 1 |
674 | $$ \displaystyle\int \dfrac{{\mathrm{e}}^{x}}{{\left(7+4{\mathrm{e}}^{x}\right)}^{3}}\, \mathrm d x $$ | 1 |
675 | $$ \displaystyle\int \dfrac{1}{{{\pi}}^{2}}{\cdot}\ln\left({x}^{2}\right){\cdot}{\left({x}^{2}-1\right)}^{-1}\, \mathrm d x $$ | 1 |
676 | $$ \displaystyle\int \sin\left({x}^{2}\right)\, \mathrm d x $$ | 1 |
677 | $$ $$ | 1 |
678 | $$ $$ | 1 |
679 | $$ \displaystyle\int \dfrac{\sin\left(2\right){\cdot}x}{{\mathrm{e}}^{x}}\, \mathrm d x $$ | 1 |
680 | $$ \displaystyle\int^{1}_{0} \dfrac{1}{2{\cdot}\sqrt{3}-(x{\cdot}\sqrt{x+1})}\, \mathrm d x $$ | 1 |
681 | $$ \displaystyle\int x{\cdot}\sqrt{x-5}\, \mathrm d x $$ | 1 |
682 | $$ $$ | 1 |
683 | $$ $$ | 1 |
684 | $$ $$ | 1 |
685 | $$ \displaystyle\int \dfrac{1{\cdot}\tan\left(x\right)}{\color{orangered}{\square}}\, \mathrm d x $$ | 1 |
686 | $$ $$ | 1 |
687 | $$ \displaystyle\int \ln\left(2\right){\cdot}\mathrm{e}\, \mathrm d x $$ | 1 |
688 | $$ \displaystyle\int \dfrac{1{\cdot}\tan\left(x\right)}{\color{orangered}{\square}}\, \mathrm d x $$ | 1 |
689 | $$ \displaystyle\int^{\pi}_{0} x{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 1 |
690 | $$ \displaystyle\int^{1.609437912}_{-1.89e^-14} {\mathrm{e}}^{x}-{\mathrm{e}}^{-3x}\, \mathrm d x $$ | 1 |
691 | $$ \int \frac{{{1}+{2}{x}}}{{{1}-{x}}} \, d\,x $$ | 1 |
692 | $$ $$ | 1 |
693 | $$ $$ | 1 |
694 | $$ \displaystyle\int \dfrac{\sqrt{{x}^{2}-1}}{x}\, \mathrm d x $$ | 1 |
695 | $$ \int \frac{{{3}+{2}{x}}}{{{3}-{x}}} \, d\,x $$ | 1 |
696 | $$ $$ | 1 |
697 | $$ $$ | 1 |
698 | $$ \displaystyle\int^{201.48}_{0} 3.88{\cdot}\sin\left(x-23.72\right)+89.381{\mathrm{e}}^{\frac{-x}{25.21}}\, \mathrm d x $$ | 1 |
699 | $$ $$ | 1 |
700 | $$ \displaystyle\int^{0}_{2\pi} {\mathrm{e}}^{-x}{\cdot}\cos\left(n\right){\cdot}x\, \mathrm d x $$ | 1 |