Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 651 | $$ $$ | 3 |
| 652 | $$ $$ | 3 |
| 653 | $$ $$ | 3 |
| 654 | $$ $$ | 3 |
| 655 | $$ \displaystyle\int \dfrac{{x}^{3}}{1500}-3{x}^{2}+150\, \mathrm d x $$ | 3 |
| 656 | $$ \displaystyle\int \dfrac{{x}^{3}}{1500}-\dfrac{3{x}^{2}}{200}+150\, \mathrm d x $$ | 3 |
| 657 | $$ \displaystyle\int^{4000}_{2000} \dfrac{{x}^{3}}{1500}-3{x}^{2}+150\, \mathrm d x $$ | 3 |
| 658 | $$ \displaystyle\int \sqrt{1+18.84x}\, \mathrm d x $$ | 3 |
| 659 | $$ \displaystyle\int \ln\left(x\right)\, \mathrm d x $$ | 3 |
| 660 | $$ $$ | 3 |
| 661 | $$ \displaystyle\int \sin\left(\dfrac{x}{2}\right)\, \mathrm d x $$ | 3 |
| 662 | $$ $$ | 3 |
| 663 | $$ $$ | 3 |
| 664 | $$ $$ | 3 |
| 665 | $$ $$ | 3 |
| 666 | $$ $$ | 3 |
| 667 | $$ \displaystyle\int^{1}_{-1} {\mathrm{e}}^{x}-1\, \mathrm d x $$ | 3 |
| 668 | $$ $$ | 3 |
| 669 | $$ $$ | 3 |
| 670 | $$ $$ | 3 |
| 671 | $$ $$ | 3 |
| 672 | $$ $$ | 3 |
| 673 | $$ \displaystyle\int^{1}_{0} \ln\left(x\right)\, \mathrm d x $$ | 3 |
| 674 | $$ $$ | 3 |
| 675 | $$ $$ | 3 |
| 676 | $$ $$ | 3 |
| 677 | $$ $$ | 3 |
| 678 | $$ $$ | 3 |
| 679 | $$ $$ | 3 |
| 680 | $$ $$ | 3 |
| 681 | $$ $$ | 3 |
| 682 | $$ $$ | 3 |
| 683 | $$ $$ | 3 |
| 684 | $$ $$ | 3 |
| 685 | $$ $$ | 3 |
| 686 | $$ $$ | 3 |
| 687 | $$ $$ | 3 |
| 688 | $$ $$ | 3 |
| 689 | $$ $$ | 3 |
| 690 | $$ $$ | 3 |
| 691 | $$ \displaystyle\int \dfrac{1}{5-{x}^{2}}\, \mathrm d x $$ | 3 |
| 692 | $$ $$ | 3 |
| 693 | $$ $$ | 3 |
| 694 | $$ $$ | 3 |
| 695 | $$ $$ | 3 |
| 696 | $$ $$ | 3 |
| 697 | $$ $$ | 3 |
| 698 | $$ $$ | 3 |
| 699 | $$ \displaystyle\int \dfrac{1}{{x}^{5}}\, \mathrm d x $$ | 3 |
| 700 | $$ \displaystyle\int^{0}_{3} x+3\, \mathrm d x $$ | 3 |