Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
601 | $$ \displaystyle\int \sin\left(10x-50\right)\, \mathrm d x $$ | 2 |
602 | $$ \displaystyle\int^{\pi/2}_{0} \dfrac{1}{1+\sin\left(2x\right)}\, \mathrm d x $$ | 2 |
603 | $$ \displaystyle\int \dfrac{\sqrt{16}-{x}^{2}}{x}\, \mathrm d x $$ | 2 |
604 | $$ \displaystyle\int^{2}_{1} {x}^{3}{\cdot}\sqrt{{x}^{4}+1}\, \mathrm d x $$ | 2 |
605 | $$ \displaystyle\int 6140x{\cdot}{\mathrm{e}}^{-0.904}\, \mathrm d x $$ | 2 |
606 | $$ \displaystyle\int \dfrac{-1}{{\left(9{x}^{2}+4\right)}^{\frac{3}{2}}}\, \mathrm d x $$ | 2 |
607 | $$ $$ | 2 |
608 | $$ \displaystyle\int \dfrac{1}{{x}^{3}{\cdot}\sqrt{{x}^{2}-4}}\, \mathrm d x $$ | 2 |
609 | $$ \displaystyle\int \dfrac{{\mathrm{e}}^{2x}}{{\mathrm{e}}^{x}-1}\, \mathrm d x $$ | 2 |
610 | $$ $$ | 2 |
611 | $$ $$ | 1 |
612 | $$ \displaystyle\int \dfrac{1}{\sqrt{{x}^{2}+x+1}}\, \mathrm d x $$ | 1 |
613 | $$ \displaystyle\int \dfrac{\sec\left(4x\right){\cdot}\sec\left(4x\right)}{2{\cdot}\tan\left(4x\right)-5}\, \mathrm d x $$ | 1 |
614 | $$ $$ | 1 |
615 | $$ $$ | 1 |
616 | $$ \displaystyle\int^{3}_{-1} 2x-{x}^{2}+3\, \mathrm d x $$ | 1 |
617 | $$ $$ | 1 |
618 | $$ $$ | 1 |
619 | $$ $$ | 1 |
620 | $$ $$ | 1 |
621 | $$ $$ | 1 |
622 | $$ $$ | 1 |
623 | $$ $$ | 1 |
624 | $$ $$ | 1 |
625 | $$ \displaystyle\int^{3}_{2} {x}^{3}-6{x}^{2}+11x-6\, \mathrm d x $$ | 1 |
626 | $$ $$ | 1 |
627 | $$ $$ | 1 |
628 | $$ \displaystyle\int -2{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 1 |
629 | $$ $$ | 1 |
630 | $$ $$ | 1 |
631 | $$ $$ | 1 |
632 | $$ \int \frac{{1}}{{x}} \, d\,x $$ | 1 |
633 | $$ $$ | 1 |
634 | $$ $$ | 1 |
635 | $$ $$ | 1 |
636 | $$ $$ | 1 |
637 | $$ \displaystyle\int 2{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 1 |
638 | $$ \displaystyle\int {\left(x-1.5\right)}^{2}-1.1\, \mathrm d x $$ | 1 |
639 | $$ $$ | 1 |
640 | $$ $$ | 1 |
641 | $$ \displaystyle\int {x}^{3}-6{x}^{2}+11x-6\, \mathrm d x $$ | 1 |
642 | $$ \displaystyle\int \sqrt{x}\, \mathrm d x $$ | 1 |
643 | $$ $$ | 1 |
644 | $$ $$ | 1 |
645 | $$ $$ | 1 |
646 | $$ $$ | 1 |
647 | $$ $$ | 1 |
648 | $$ \displaystyle\int \dfrac{1}{\sqrt{1+{x}^{2}}}\, \mathrm d x $$ | 1 |
649 | $$ $$ | 1 |
650 | $$ \displaystyle\int 3x+\dfrac{1}{\sin\left(x\right)}\, \mathrm d x $$ | 1 |