Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
551 | $$ \displaystyle\int \sec\left(x\right)\, \mathrm d x $$ | 2 |
552 | $$ \displaystyle\int \mathrm{e}^{3x}\, \mathrm d x $$ | 2 |
553 | $$ \displaystyle\int \dfrac{1}{\left({x}^{4}+1\right){\cdot}{x}^{2}}\, \mathrm d x $$ | 2 |
554 | $$ \displaystyle\int \sqrt{{x}^{2}+1}\, \mathrm d x $$ | 2 |
555 | $$ \displaystyle\int^{2}_{0} {x}^{2}{\cdot}\sqrt{8-{x}^{2}}\, \mathrm d x $$ | 2 |
556 | $$ \displaystyle\int^{2}_{0} 2{\pi}{\cdot}\left(\sqrt{x}{\cdot}\sqrt{1}+\dfrac{1}{4x}\right)\, \mathrm d x $$ | 2 |
557 | $$ \displaystyle\int sqr\, \mathrm d x $$ | 2 |
558 | $$ \displaystyle\int \dfrac{{x}^{2}-3x+2}{x+1}\, \mathrm d x $$ | 2 |
559 | $$ \displaystyle\int \mathrm{e}^{-x}\, \mathrm d x $$ | 2 |
560 | $$ \displaystyle\int^{1}_{0} {\left(\sin\left(x\right)\right)}^{2}\, \mathrm d x $$ | 2 |
561 | $$ \displaystyle\int \mathrm{e}^{-ax}\, \mathrm d x $$ | 2 |
562 | $$ \displaystyle\int^{\pi/4}_{0} \sqrt{1+\cos\left(4x\right)}\, \mathrm d x $$ | 2 |
563 | $$ \displaystyle\int {\left(3-4x\right)}^{\frac{5}{2}}\, \mathrm d x $$ | 2 |
564 | $$ \displaystyle\int {\left(\csc\left(x\right)\right)}^{2}\, \mathrm d x $$ | 2 |
565 | $$ \displaystyle\int \dfrac{4{\cdot}\cos\left(x\right)}{{\left(\sin\left(x\right)\right)}^{2}-4}\, \mathrm d x $$ | 2 |
566 | $$ \displaystyle\int \csc\left(x\right){\cdot}\cot\left(x\right)\, \mathrm d x $$ | 2 |
567 | $$ \displaystyle\int {\mathrm{e}}^{-1.22{\cdot}\cosh\left(x\right)}\, \mathrm d x $$ | 2 |
568 | $$ \displaystyle\int \sqrt{5}\, \mathrm d x $$ | 2 |
569 | $$ \displaystyle\int^{3}_{1} x\, \mathrm d x $$ | 2 |
570 | $$ $$ | 2 |
571 | $$ \displaystyle\int \sin\left(2\right){\cdot}x+\cos\left(2\right){\cdot}x\, \mathrm d x $$ | 2 |
572 | $$ \displaystyle\int \sqrt{6}\, \mathrm d x $$ | 2 |
573 | $$ \displaystyle\int \dfrac{a}{{x}^{2}+{a}^{2}}\, \mathrm d x $$ | 2 |
574 | $$ \displaystyle\int -\csc\left(x\right){\cdot}\cot\left(x\right)\, \mathrm d x $$ | 2 |
575 | $$ \displaystyle\int \left({x}^{2}+2x\right){\cdot}\mathrm{e}^{3x}\, \mathrm d x $$ | 2 |
576 | $$ $$ | 2 |
577 | $$ \displaystyle\int \cos\left(\dfrac{n{\cdot}{\pi}{\cdot}x}{2}\right)\, \mathrm d x $$ | 2 |
578 | $$ \displaystyle\int -x+(\dfrac{2}{{x}^{2}+x+2})\, \mathrm d x $$ | 2 |
579 | $$ $$ | 2 |
580 | $$ $$ | 2 |
581 | $$ $$ | 2 |
582 | $$ \displaystyle\int \dfrac{1}{\left(1+{x}^{3}\right){\cdot}\left(1+{x}^{2}\right)}\, \mathrm d x $$ | 2 |
583 | $$ \displaystyle\int \dfrac{-x+2}{{x}^{2}+x+2}\, \mathrm d x $$ | 2 |
584 | $$ \displaystyle\int^{3}_{0} \dfrac{1}{\sqrt{9-{x}^{2}}}\, \mathrm d x $$ | 2 |
585 | $$ $$ | 2 |
586 | $$ $$ | 2 |
587 | $$ $$ | 2 |
588 | $$ \displaystyle\int^{4}_{1} \ln\left({x}^{2}-4x+5\right)-0.2x\, \mathrm d x $$ | 2 |
589 | $$ $$ | 2 |
590 | $$ \displaystyle\int \dfrac{x}{{\mathrm{e}}^{2}}\, \mathrm d x $$ | 2 |
591 | $$ \displaystyle\int \dfrac{1}{x{\cdot}\ln\left(x\right)}\, \mathrm d x $$ | 2 |
592 | $$ \displaystyle\int \dfrac{x}{{\mathrm{e}}^{2}}{\cdot}x\, \mathrm d x $$ | 2 |
593 | $$ \displaystyle\int \sqrt{x}{\cdot}\color{orangered}{\square}\, \mathrm d x $$ | 2 |
594 | $$ $$ | 2 |
595 | $$ \displaystyle\int^{\pi/4}_{0} {\left(\sin\left(2x\right)\right)}^{4}\, \mathrm d x $$ | 2 |
596 | $$ \displaystyle\int^{1}_{0} 2{\pi}{\cdot}\left(\sqrt{1}-x\right){\cdot}\left(1+x\right)\, \mathrm d x $$ | 2 |
597 | $$ $$ | 2 |
598 | $$ $$ | 2 |
599 | $$ $$ | 2 |
600 | $$ \displaystyle\int {\left(16{x}^{2}+4\right)}^{\frac{3}{2}}\, \mathrm d x $$ | 2 |