Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
501 | $$ \displaystyle\int \sin\left(n\right){\cdot}x\, \mathrm d x $$ | 2 |
502 | $$ $$ | 2 |
503 | $$ \displaystyle\int^{1}_{0} {\mathrm{e}}^{-{x}^{2}}\, \mathrm d x $$ | 2 |
504 | $$ \displaystyle\int \dfrac{x}{{\left({x}^{2}+{a}^{2}\right)}^{\frac{3}{2}}}\, \mathrm d x $$ | 2 |
505 | $$ \displaystyle\int^{e}_{1} \left(1-\dfrac{\ln\left(x\right)}{x}\right){\cdot}\sqrt{{x}^{2}-2x+2}\, \mathrm d x $$ | 2 |
506 | $$ \displaystyle\int^{2}_{0} \dfrac{2+\cos\left(1+{x}^{1.5}\right)}{\sqrt{1+0.5{\cdot}\sin\left(x\right)}}\, \mathrm d x $$ | 2 |
507 | $$ \displaystyle\int^{1}_{-\infty} \dfrac{{\mathrm{e}}^{-{x}^{2}}}{{\left(2{\pi}\right)}^{0.5}}\, \mathrm d x $$ | 2 |
508 | $$ \displaystyle\int \dfrac{-1}{{x}^{2}}\, \mathrm d x $$ | 2 |
509 | $$ \displaystyle\int^{4}_{0} \sqrt{1+4{x}^{2}}\, \mathrm d x $$ | 2 |
510 | $$ \displaystyle\int \dfrac{1}{\left(x+1\right){\cdot}\left(n-x\right)}\, \mathrm d x $$ | 2 |
511 | $$ \displaystyle\int^{2}_{-2} {x}^{2}+4x+6\, \mathrm d x $$ | 2 |
512 | $$ $$ | 2 |
513 | $$ \displaystyle\int \dfrac{\ln\left(x+2\right)}{\sqrt{x+2}}\, \mathrm d x $$ | 2 |
514 | $$ \displaystyle\int \left(1+x\right){\cdot}{\mathrm{e}}^{x}\, \mathrm d x $$ | 2 |
515 | $$ $$ | 2 |
516 | $$ $$ | 2 |
517 | $$ $$ | 2 |
518 | $$ \displaystyle\int \sqrt{1-\sin\left(\ln\left(x\right)\right)}\, \mathrm d x $$ | 2 |
519 | $$ \displaystyle\int {t}^{3}+3\, \mathrm d x $$ | 2 |
520 | $$ $$ | 2 |
521 | $$ \displaystyle\int {x}^{4}{\cdot}\cos\left(x\right)\, \mathrm d x $$ | 2 |
522 | $$ \displaystyle\int {x}^{3}+3\, \mathrm d x $$ | 2 |
523 | $$ \displaystyle\int \dfrac{\cos\left(x\right)}{\sin\left(\color{orangered}{\square}\right)}\, \mathrm d x $$ | 2 |
524 | $$ \displaystyle\int^{2}_{0} x{\cdot}\left(1-x\right)\, \mathrm d x $$ | 2 |
525 | $$ \displaystyle\int \dfrac{\sqrt{x-{x}^{2}}}{{x}^{4}}\, \mathrm d x $$ | 2 |
526 | $$ \displaystyle\int^{\pi/2}_{0} {\left(\sin\left(x\right)\right)}^{4}{\cdot}{\left(\cos\left(x\right)\right)}^{4}\, \mathrm d x $$ | 2 |
527 | $$ $$ | 2 |
528 | $$ \displaystyle\int \dfrac{1}{x}{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 2 |
529 | $$ \displaystyle\int^{\pi/2}_{0} {\left(\sin\left(x\right)\right)}^{5}{\cdot}x\, \mathrm d x $$ | 2 |
530 | $$ $$ | 2 |
531 | $$ \displaystyle\int 2{x}^{-1}\, \mathrm d x $$ | 2 |
532 | $$ \displaystyle\int \dfrac{{x}^{2}+1}{{\left(x+1\right)}^{2}}\, \mathrm d x $$ | 2 |
533 | $$ $$ | 2 |
534 | $$ \displaystyle\int^{\pi/2}_{0} {\left(\sin\left(x\right)\right)}^{5}\, \mathrm d x $$ | 2 |
535 | $$ \displaystyle\int^{1}_{0} \dfrac{{\left(x-\dfrac{8}{15}\right)}^{2}{\cdot}2{\cdot}\left(x+2\right)}{5}\, \mathrm d x $$ | 2 |
536 | $$ $$ | 2 |
537 | $$ $$ | 2 |
538 | $$ $$ | 2 |
539 | $$ \displaystyle\int^{2.7e182}_{1} x\, \mathrm d x $$ | 2 |
540 | $$ \displaystyle\int \dfrac{x-1}{{x}^{2}}\, \mathrm d x $$ | 2 |
541 | $$ \displaystyle\int^{4}_{0} 3.14{\cdot}{\left(\sqrt{x}+1\right)}^{2}\, \mathrm d x $$ | 2 |
542 | $$ \displaystyle\int \cot\left(x\right)\, \mathrm d x $$ | 2 |
543 | $$ \displaystyle\int^{e}_{1} x\, \mathrm d x $$ | 2 |
544 | $$ \displaystyle\int x{\cdot}{\left(\sin\left(x\right)\right)}^{2}\, \mathrm d x $$ | 2 |
545 | $$ \displaystyle\int \cos\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 2 |
546 | $$ \displaystyle\int^{\pi/2}_{0} \cos\left(1-\tan\left(\color{orangered}{\square}\right)\right)\, \mathrm d x $$ | 2 |
547 | $$ \displaystyle\int \arcsin\left(x\right)\, \mathrm d x $$ | 2 |
548 | $$ $$ | 2 |
549 | $$ \displaystyle\int \sqrt{{x}^{2}+{x}^{4}}\, \mathrm d x $$ | 2 |
550 | $$ \int {x}^{{2}} \, d\,x $$ | 2 |