Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
3601 | $ \dfrac{x{\cdot}\cos\left(x\right)}{{\mathrm{e}}^{x}} $ | 1 |
3602 | $ \, x \, $ | 1 |
3603 | $ \, x \, $ | 1 |
3604 | $ \, x \, $ | 1 |
3605 | $ \sqrt{x+8} $ | 1 |
3606 | $ {x}+\frac{{2}}{{\left({2}{x}-{1}\right)}^{{2}}} $ | 1 |
3607 | $ \cos\left(9{x}^{6}+3{x}^{10}\right) $ | 1 |
3608 | $ \sqrt{2{x}^{4}}-\dfrac{5}{3{x}^{2}} $ | 1 |
3609 | $ 4{\mathrm{e}}^{-5{x}^{4}-4{x}^{6}} $ | 1 |
3610 | $ 1200{\cdot}{1.25}^{\sqrt{x}} $ | 1 |
3611 | $ 3{\cdot}\sin\left(\color{orangered}{\square}\right) $ | 1 |
3612 | $ 3{\mathrm{e}}^{\sin\left(t\right)} $ | 1 |
3613 | $ \, x \, $ | 1 |
3614 | $ \, x \, $ | 1 |
3615 | $ \, x \, $ | 1 |
3616 | $ \, x \, $ | 1 |
3617 | $ \, x \, $ | 1 |
3618 | $ {\mathrm{e}}^{3{x}^{2}-12} $ | 1 |
3619 | $ \dfrac{abc}{{\left(x+a\right)}^{\frac{3}{2}}} $ | 1 |
3620 | $ \dfrac{12x}{{\left(5{x}^{2}+6\right)}^{2}} $ | 1 |
3621 | $ \left(2{x}^{2}+6\right){\cdot}\left(2{x}^{3}+1\right) $ | 1 |
3622 | $ 3{\cdot}\left(3{x}^{2}-5x+{\left(\sqrt{{\pi}}\right)}^{4}\right) $ | 1 |
3623 | $ a{x}^{3}-{x}^{2} $ | 1 |
3624 | $ {\left({x}^{2}-16\right)}^{3} $ | 1 |
3625 | $ 3{\cdot}{\left(\sin\left(x\right)\right)}^{3} $ | 1 |
3626 | $ \cot\left({x}^{2}+1\right) $ | 1 |
3627 | $ {\left(4{x}^{2}+3x\right)}^{2} $ | 1 |
3628 | $ \, x \, $ | 1 |
3629 | $ {x}^{2}+\dfrac{11}{{x}^{2}} $ | 1 |
3630 | $ \, x \, $ | 1 |
3631 | $ \, x \, $ | 1 |
3632 | $ \, x \, $ | 1 |
3633 | $ 2t{\cdot}{\left(t-8\right)}^{2}+32 $ | 1 |
3634 | $ \, x \, $ | 1 |
3635 | $ \dfrac{{x}^{2}+2x+1}{x+1} $ | 1 |
3636 | $ 2{x}^{2}y+{y}^{3} $ | 1 |
3637 | $ -3{x}^{6}-{x}^{4}+4x $ | 1 |
3638 | $ \, x \, $ | 1 |
3639 | $ \, x \, $ | 1 |
3640 | $ \, x \, $ | 1 |
3641 | $ \, x \, $ | 1 |
3642 | $ \, x \, $ | 1 |
3643 | $ \, x \, $ | 1 |
3644 | $ \, x \, $ | 1 |
3645 | $ 35t-4.9{t}^{2} $ | 1 |
3646 | $ \ln\left({x}^{6}-{y}^{4}\right) $ | 1 |
3647 | $ -2{x}^{2}-2xy+180x $ | 1 |
3648 | $ 6{x}^{6}-4{x}^{3}+12 $ | 1 |
3649 | $ \ln\left({x}^{2}{\cdot}\sqrt{{x}^{4}+1}\right) $ | 1 |
3650 | $ \, x \, $ | 1 |