Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
3551 | $ \tan\left({x}^{3}\right) $ | 1 |
3552 | $ \dfrac{2}{{\left({a}^{2}+{x}^{2}\right)}^{2}} $ | 1 |
3553 | $ 8t{\cdot}{\mathrm{e}}^{-t}{\cdot}\left(2-t{\cdot}{\mathrm{e}}^{-t}\right) $ | 1 |
3554 | $ 2.3 $ | 1 |
3555 | $ -9{x}^{3}+15{x}^{2}-98 $ | 1 |
3556 | $ \dfrac{6}{{\left(2x-5\right)}^{\frac{1}{3}}} $ | 1 |
3557 | $ 2{\cdot}\tan\left(x\right) $ | 1 |
3558 | $ \arctan\left(\tan\left(ax\right)\right) $ | 1 |
3559 | $ \sqrt{10x}+13 $ | 1 |
3560 | $ fx $ | 1 |
3561 | $ \, x \, $ | 1 |
3562 | $ \, x \, $ | 1 |
3563 | $ \, x \, $ | 1 |
3564 | $ \left(3{x}^{2}+2\right){\cdot}{\left(5{x}^{3}+10x\right)}^{4} $ | 1 |
3565 | $ \, x \, $ | 1 |
3566 | $ \dfrac{1}{40} $ | 1 |
3567 | $ \dfrac{1}{2}{\cdot}\left(4-{x}^{2}\right) $ | 1 |
3568 | $ \, x \, $ | 1 |
3569 | $ \, x \, $ | 1 |
3570 | $ \, x \, $ | 1 |
3571 | $ \tan\left(3{x}^{3}\right) $ | 1 |
3572 | $ \dfrac{{\left(x-4\right)}^{2}}{60x} $ | 1 |
3573 | $ {\left(a{x}^{2}+b\right)}^{0.5} $ | 1 |
3574 | $ \dfrac{x}{{\left({x}^{2}+{y}^{2}+{z}^{2}\right)}^{1.5}} $ | 1 |
3575 | $ \sqrt{\color{orangered}{\square}} $ | 1 |
3576 | $ \, x \, $ | 1 |
3577 | $ 2{\cdot}\ln\left(3-0.25t\right) $ | 1 |
3578 | $ x{\cdot}\tan\left(x\right) $ | 1 |
3579 | $ \, x \, $ | 1 |
3580 | $ \, x \, $ | 1 |
3581 | $ \, x \, $ | 1 |
3582 | $ \, x \, $ | 1 |
3583 | $ \, x \, $ | 1 |
3584 | $ \dfrac{1}{2}{\cdot}{\mathrm{e}}^{3}{\cdot}x $ | 1 |
3585 | $ \, x \, $ | 1 |
3586 | $ \, x \, $ | 1 |
3587 | $ x+(\dfrac{4}{x+1}) $ | 1 |
3588 | $ {x}+\frac{{2}}{{{2}{x}-{1}}} $ | 1 |
3589 | $ 4{\mathrm{e}}^{-5}{\cdot}{x}^{4}-4{x}^{6} $ | 1 |
3590 | $ {x}^{2}{\cdot}\left(1-2x\right) $ | 1 |
3591 | $ \, x \, $ | 1 |
3592 | $ 3{x}^{2}{\cdot}{1.2}^{x} $ | 1 |
3593 | $ 2{x}^{9}+6{x}^{3}+70 $ | 1 |
3594 | $ \arctan\left(\tan\left(ax\right){\cdot}b\right) $ | 1 |
3595 | $ \dfrac{2{x}^{6}-7{x}^{5}+2}{{x}^{4}} $ | 1 |
3596 | $ k{\cdot}{\left(\sin\left(x\right)\right)}^{3} $ | 1 |
3597 | $ \, x \, $ | 1 |
3598 | $ \, x \, $ | 1 |
3599 | $ \dfrac{{x}^{4}+12}{{x}^{2}} $ | 1 |
3600 | $ \, x \, $ | 1 |