Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
3651 | $ \, x \, $ | 1 |
3652 | $ \, x \, $ | 1 |
3653 | $ \, x \, $ | 1 |
3654 | $ \, x \, $ | 1 |
3655 | $ \, x \, $ | 1 |
3656 | $ \, x \, $ | 1 |
3657 | $ 2t{\cdot}{\left(t-8\right)}^{2} $ | 1 |
3658 | $ x{\cdot}\sqrt{x+2} $ | 1 |
3659 | $ \, x \, $ | 1 |
3660 | $ {\left(2x+7\right)}^{-1} $ | 1 |
3661 | $ 2{t}^{-\frac{3}{4}} $ | 1 |
3662 | $ 9{x}^{2}{\cdot}\sin\left(x\right) $ | 1 |
3663 | $ \, x \, $ | 1 |
3664 | $ \, x \, $ | 1 |
3665 | $ \, x \, $ | 1 |
3666 | $ \, x \, $ | 1 |
3667 | $ \, x \, $ | 1 |
3668 | $ \, x \, $ | 1 |
3669 | $ \, x \, $ | 1 |
3670 | $ \, x \, $ | 1 |
3671 | $ \, x \, $ | 1 |
3672 | $ \ln\left({x}^{7}{\cdot}{\left(x+7\right)}^{8}{\cdot}{\left({x}^{2}+6\right)}^{9}\right) $ | 1 |
3673 | $ {\left(\dfrac{6x+2}{7x-1}\right)}^{2} $ | 1 |
3674 | $ {\left(2x-3\right)}^{2}{\cdot}\left({\mathrm{e}}^{4}{\cdot}x-1\right) $ | 1 |
3675 | $ \dfrac{75}{3x} $ | 1 |
3676 | $ -2{\cdot}\csc\left(7x\right) $ | 1 |
3677 | $ 2x{\cdot}\ln\left(5\right)+{\mathrm{e}}^{x} $ | 1 |
3678 | $ -12{x}^{5}-4x-74 $ | 1 |
3679 | $ \dfrac{\ln\left(x{\cdot}\sqrt{2}\right)}{\ln\left(\sqrt{2}\right)} $ | 1 |
3680 | $ a{\cdot}{\mathrm{e}}^{-t}+bt{\cdot}{\mathrm{e}}^{-t} $ | 1 |
3681 | $ \, x \, $ | 1 |
3682 | $ \, x \, $ | 1 |
3683 | $ \, x \, $ | 1 |
3684 | $ \, x \, $ | 1 |
3685 | $ \, x \, $ | 1 |
3686 | $ \, x \, $ | 1 |
3687 | $ \, x \, $ | 1 |
3688 | $ \, x \, $ | 1 |
3689 | $ 0.8{\cdot}\ln\left(x\right) $ | 1 |
3690 | $ \, x \, $ | 1 |
3691 | $ {\left(\dfrac{3-5x}{2+x}\right)}^{4} $ | 1 |
3692 | $ {\left(\dfrac{x+6}{x+2}\right)}^{4} $ | 1 |
3693 | $ \sqrt{2}{\cdot}x+10 $ | 1 |
3694 | $ \, x \, $ | 1 |
3695 | $ -6{x}^{9}+{x}^{4}+39 $ | 1 |
3696 | $ \dfrac{8{x}^{2}-288}{x-6} $ | 1 |
3697 | $ \, x \, $ | 1 |
3698 | $ {x}^{31}{\cdot}\left({x}^{6}+8{x}^{4}-9\right) $ | 1 |
3699 | $ \left(\dfrac{3}{2}{\cdot}x-1\right){\cdot}\left(\dfrac{9}{4}{\cdot}x-1\right) $ | 1 |
3700 | $ \, x \, $ | 1 |